Tag Archives: toys

#432549 Your Next Pilot Could Be Drone Software

Would you get on a plane that didn’t have a human pilot in the cockpit? Half of air travelers surveyed in 2017 said they would not, even if the ticket was cheaper. Modern pilots do such a good job that almost any air accident is big news, such as the Southwest engine disintegration on April 17.

But stories of pilot drunkenness, rants, fights and distraction, however rare, are reminders that pilots are only human. Not every plane can be flown by a disaster-averting pilot, like Southwest Capt. Tammie Jo Shults or Capt. Chesley “Sully” Sullenberger. But software could change that, equipping every plane with an extremely experienced guidance system that is always learning more.

In fact, on many flights, autopilot systems already control the plane for basically all of the flight. And software handles the most harrowing landings—when there is no visibility and the pilot can’t see anything to even know where he or she is. But human pilots are still on hand as backups.

A new generation of software pilots, developed for self-flying vehicles, or drones, will soon have logged more flying hours than all humans have—ever. By combining their enormous amounts of flight data and experience, drone-control software applications are poised to quickly become the world’s most experienced pilots.

Drones That Fly Themselves
Drones come in many forms, from tiny quad-rotor copter toys to missile-firing winged planes, or even 7-ton aircraft that can stay aloft for 34 hours at a stretch.

When drones were first introduced, they were flown remotely by human operators. However, this merely substitutes a pilot on the ground for one aloft. And it requires significant communications bandwidth between the drone and control center, to carry real-time video from the drone and to transmit the operator’s commands.

Many newer drones no longer need pilots; some drones for hobbyists and photographers can now fly themselves along human-defined routes, leaving the human free to sightsee—or control the camera to get the best view.

University researchers, businesses, and military agencies are now testing larger and more capable drones that will operate autonomously. Swarms of drones can fly without needing tens or hundreds of humans to control them. And they can perform coordinated maneuvers that human controllers could never handle.

Could humans control these 1,218 drones all together?

Whether flying in swarms or alone, the software that controls these drones is rapidly gaining flight experience.

Importance of Pilot Experience
Experience is the main qualification for pilots. Even a person who wants to fly a small plane for personal and noncommercial use needs 40 hours of flying instruction before getting a private pilot’s license. Commercial airline pilots must have at least 1,000 hours before even serving as a co-pilot.

On-the-ground training and in-flight experience prepare pilots for unusual and emergency scenarios, ideally to help save lives in situations like the “Miracle on the Hudson.” But many pilots are less experienced than “Sully” Sullenberger, who saved his planeload of people with quick and creative thinking. With software, though, every plane can have on board a pilot with as much experience—if not more. A popular software pilot system, in use in many aircraft at once, could gain more flight time each day than a single human might accumulate in a year.

As someone who studies technology policy as well as the use of artificial intelligence for drones, cars, robots, and other uses, I don’t lightly suggest handing over the controls for those additional tasks. But giving software pilots more control would maximize computers’ advantages over humans in training, testing, and reliability.

Training and Testing Software Pilots
Unlike people, computers will follow sets of instructions in software the same way every time. That lets developers create instructions, test reactions, and refine aircraft responses. Testing could make it far less likely, for example, that a computer would mistake the planet Venus for an oncoming jet and throw the plane into a steep dive to avoid it.

The most significant advantage is scale: Rather than teaching thousands of individual pilots new skills, updating thousands of aircraft would require only downloading updated software.

These systems would also need to be thoroughly tested—in both real-life situations and in simulations—to handle a wide range of aviation situations and to withstand cyberattacks. But once they’re working well, software pilots are not susceptible to distraction, disorientation, fatigue, or other human impairments that can create problems or cause errors even in common situations.

Rapid Response and Adaptation
Already, aircraft regulators are concerned that human pilots are forgetting how to fly on their own and may have trouble taking over from an autopilot in an emergency.

In the “Miracle on the Hudson” event, for example, a key factor in what happened was how long it took for the human pilots to figure out what had happened—that the plane had flown through a flock of birds, which had damaged both engines—and how to respond. Rather than the approximately one minute it took the humans, a computer could have assessed the situation in seconds, potentially saving enough time that the plane could have landed on a runway instead of a river.

Aircraft damage can pose another particularly difficult challenge for human pilots: It can change what effects the controls have on its flight. In cases where damage renders a plane uncontrollable, the result is often tragedy. A sufficiently advanced automated system could make minute changes to the aircraft’s steering and use its sensors to quickly evaluate the effects of those movements—essentially learning how to fly all over again with a damaged plane.

Boosting Public Confidence
The biggest barrier to fully automated flight is psychological, not technical. Many people may not want to trust their lives to computer systems. But they might come around when reassured that the software pilot has tens, hundreds, or thousands more hours of flight experience than any human pilot.

Other autonomous technologies, too, are progressing despite public concerns. Regulators and lawmakers are allowing self-driving cars on the roads in many states. But more than half of Americans don’t want to ride in one, largely because they don’t trust the technology. And only 17 percent of travelers around the world are willing to board a plane without a pilot. However, as more people experience self-driving cars on the road and have drones deliver them packages, it is likely that software pilots will gain in acceptance.

The airline industry will certainly be pushing people to trust the new systems: Automating pilots could save tens of billions of dollars a year. And the current pilot shortage means software pilots may be the key to having any airline service to smaller destinations.

Both Boeing and Airbus have made significant investments in automated flight technology, which would remove or reduce the need for human pilots. Boeing has actually bought a drone manufacturer and is looking to add software pilot capabilities to the next generation of its passenger aircraft. (Other tests have tried to retrofit existing aircraft with robotic pilots.)

One way to help regular passengers become comfortable with software pilots—while also helping to both train and test the systems—could be to introduce them as co-pilots working alongside human pilots. Planes would be operated by software from gate to gate, with the pilots instructed to touch the controls only if the system fails. Eventually pilots could be removed from the aircraft altogether, just like they eventually were from the driverless trains that we routinely ride in airports around the world.

This article was originally published on The Conversation. Read the original article.

Image Credit: Skycolors / Shutterstock.com Continue reading

Posted in Human Robots

#432031 Why the Rise of Self-Driving Vehicles ...

It’s been a long time coming. For years Waymo (formerly known as Google Chauffeur) has been diligently developing, driving, testing and refining its fleets of various models of self-driving cars. Now Waymo is going big. The company recently placed an order for several thousand new Chrysler Pacifica minivans and next year plans to launch driverless taxis in a number of US cities.

This deal raises one of the biggest unanswered questions about autonomous vehicles: if fleets of driverless taxis make it cheap and easy for regular people to get around, what’s going to happen to car ownership?

One popular line of thought goes as follows: as autonomous ride-hailing services become ubiquitous, people will no longer need to buy their own cars. This notion has a certain logical appeal. It makes sense to assume that as driverless taxis become widely available, most of us will eagerly sell the family car and use on-demand taxis to get to work, run errands, or pick up the kids. After all, vehicle ownership is pricey and most cars spend the vast majority of their lives parked.

Even experts believe commercial availability of autonomous vehicles will cause car sales to drop.

Market research firm KPMG estimates that by 2030, midsize car sales in the US will decline from today’s 5.4 million units sold each year to nearly half that number, a measly 2.1 million units. Another market research firm, ReThinkX, offers an even more pessimistic estimate (or optimistic, depending on your opinion of cars), predicting that autonomous vehicles will reduce consumer demand for new vehicles by a whopping 70 percent.

The reality is that the impending death of private vehicle sales is greatly exaggerated. Despite the fact that autonomous taxis will be a beneficial and widely-embraced form of urban transportation, we will witness the opposite. Most people will still prefer to own their own autonomous vehicle. In fact, the total number of units of autonomous vehicles sold each year is going to increase rather than decrease.

When people predict the demise of car ownership, they are overlooking the reality that the new autonomous automotive industry is not going to be just a re-hash of today’s car industry with driverless vehicles. Instead, the automotive industry of the future will be selling what could be considered an entirely new product: a wide variety of intelligent, self-guiding transportation robots. When cars become a widely used type of transportation robot, they will be cheap, ubiquitous, and versatile.

Several unique characteristics of autonomous vehicles will ensure that people will continue to buy their own cars.

1. Cost: Thanks to simpler electric engines and lighter auto bodies, autonomous vehicles will be cheaper to buy and maintain than today’s human-driven vehicles. Some estimates bring the price to $10K per vehicle, a stark contrast with today’s average of $30K per vehicle.

2. Personal belongings: Consumers will be able to do much more in their driverless vehicles, including work, play, and rest. This means they will want to keep more personal items in their cars.

3. Frequent upgrades: The average (human-driven) car today is owned for 10 years. As driverless cars become software-driven devices, their price/performance ratio will track to Moore’s law. Their rapid improvement will increase the appeal and frequency of new vehicle purchases.

4. Instant accessibility: In a dense urban setting, a driverless taxi is able to show up within minutes of being summoned. But not so in rural areas, where people live miles apart. For many, delay and “loss of control” over their own mobility will increase the appeal of owning their own vehicle.

5. Diversity of form and function: Autonomous vehicles will be available in a wide variety of sizes and shapes. Consumers will drive demand for custom-made, purpose-built autonomous vehicles whose form is adapted for a particular function.

Let’s explore each of these characteristics in more detail.

Autonomous vehicles will cost less for several reasons. For one, they will be powered by electric engines, which are cheaper to construct and maintain than gasoline-powered engines. Removing human drivers will also save consumers money. Autonomous vehicles will be much less likely to have accidents, hence they can be built out of lightweight, lower-cost materials and will be cheaper to insure. With the human interface no longer needed, autonomous vehicles won’t be burdened by the manufacturing costs of a complex dashboard, steering wheel, and foot pedals.

While hop-on, hop-off autonomous taxi-based mobility services may be ideal for some of the urban population, several sizeable customer segments will still want to own their own cars.

These include people who live in sparsely-populated rural areas who can’t afford to wait extended periods of time for a taxi to appear. Families with children will prefer to own their own driverless cars to house their childrens’ car seats and favorite toys and sippy cups. Another loyal car-buying segment will be die-hard gadget-hounds who will eagerly buy a sexy upgraded model every year or so, unable to resist the siren song of AI that is three times as safe, or a ride that is twice as smooth.

Finally, consider the allure of robotic diversity.

Commuters will invest in a home office on wheels, a sleek, traveling workspace resembling the first-class suite on an airplane. On the high end of the market, city-dwellers and country-dwellers alike will special-order custom-made autonomous vehicles whose shape and on-board gadgetry is adapted for a particular function or hobby. Privately-owned small businesses will buy their own autonomous delivery robot that could range in size from a knee-high, last-mile delivery pod, to a giant, long-haul shipping device.

As autonomous vehicles near commercial viability, Waymo’s procurement deal with Fiat Chrysler is just the beginning.

The exact value of this future automotive industry has yet to be defined, but research from Intel’s internal autonomous vehicle division estimates this new so-called “passenger economy” could be worth nearly $7 trillion a year. To position themselves to capture a chunk of this potential revenue, companies whose businesses used to lie in previously disparate fields such as robotics, software, ships, and entertainment (to name but a few) have begun to form a bewildering web of what they hope will be symbiotic partnerships. Car hailing and chip companies are collaborating with car rental companies, who in turn are befriending giant software firms, who are launching joint projects with all sizes of hardware companies, and so on.

Last year, car companies sold an estimated 80 million new cars worldwide. Over the course of nearly a century, car companies and their partners, global chains of suppliers and service providers, have become masters at mass-producing and maintaining sturdy and cost-effective human-driven vehicles. As autonomous vehicle technology becomes ready for mainstream use, traditional automotive companies are being forced to grapple with the painful realization that they must compete in a new playing field.

The challenge for traditional car-makers won’t be that people no longer want to own cars. Instead, the challenge will be learning to compete in a new and larger transportation industry where consumers will choose their product according to the appeal of its customized body and the quality of its intelligent software.

Melba Kurman and Hod Lipson are the authors of Driverless: Intelligent Cars and the Road Ahead and Fabricated: the New World of 3D Printing.

Image Credit: hfzimages / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#432021 Unleashing Some of the Most Ambitious ...

At Singularity University, we are unleashing a generation of women who are smashing through barriers and starting some of the most ambitious technology companies on the planet.

Singularity University was founded in 2008 to empower leaders to use exponential technologies to solve our world’s biggest challenges. Our flagship program, the Global Solutions Program, has historically brought 80 entrepreneurs from around the world to Silicon Valley for 10 weeks to learn about exponential technologies and create moonshot startups that improve the lives of a billion people within a decade.

After nearly 10 years of running this program, we can say that about 70 percent of our successful startups have been founded or co-founded by female entrepreneurs (see below for inspiring examples of their work). This is in sharp contrast to the typical 10–20 percent of venture-backed tech companies that have a female founder, as reported by TechCrunch.

How are we so dramatically changing the game? While 100 percent of the credit goes to these courageous women, as both an alumna of the Global Solutions Program and our current vice chair of Global Grand Challenges, I want to share my reflections on what has worked.

At the most basic level, it is essential to deeply believe in the inherent worth, intellectual genius, and profound entrepreneurial caliber of women. While this may seem obvious, this is not the way our world currently thinks—we live in a world that sees women’s ideas, contributions, work, and existence as inherently less valuable than men’s.

For example, a 2017 Harvard Business Review article noted that even when women engage in the same behaviors and work as men, their work is considered less valuable simply because a woman did the job. An additional 2017 Harvard Business Review article showed that venture capitalists are significantly less likely to invest in female entrepreneurs and are more likely to ask men questions about the potential success of their companies while grilling women about the potential downfalls of their companies.

This doubt and lack of recognition of the genius and caliber of women is also why women are still paid less than men for completing identical work. Further, it’s why women’s work often gets buried in “number two” support roles of men in leadership roles and why women are expected to take on second shifts at home managing tedious household chores in addition to their careers. I would also argue these views as well as the rampant sexual harassment, assault, and violence against women that exists today stems from stubborn, historical, patriarchal views of women as living for the benefit of men, rather than for their own sovereignty and inherent value.

As with any other business, Singularity University has not been immune to these biases but is resolutely focused on helping women achieve intellectual genius and global entrepreneurial caliber by harnessing powerful exponential technologies.

We create an environment where women can physically and intellectually thrive free of harassment to reach their full potential, and we are building a broader ecosystem of alumni and partners around the world who not only support our female entrepreneurs throughout their entrepreneurial journeys, but who are also sparking and leading systemic change in their own countries and communities.

Respecting the Intellectual Genius and Entrepreneurial Caliber of Women
The entrepreneurial legends of our time—Steve Jobs, Elon Musk, Mark Zuckerberg, Bill Gates, Jeff Bezos, Larry Page, Sergey Brin—are men who have all built their empires using exponential technologies. Exponential technologies helped these men succeed faster and with greater impact due to Moore’s Law and the Law of Accelerating Returns which states that any digital technology (such as computing, software, artificial intelligence, robotics, quantum computing, biotechnology, nanotechnology, etc.) will become more sophisticated while dramatically falling in price, enabling rapid scaling.

Knowing this, an entrepreneur can plot her way to an ambitious global solution over time, releasing new applications just as the technology and market are ready. Furthermore, these rapidly advancing technologies often converge to create new tools and opportunities for innovators to come up with novel solutions to challenges that were previously impossible to solve in the past.

For various reasons, women have not pursued exponential technologies as aggressively as men (or were prevented or discouraged from doing so).

While more women are founding firms at a higher rate than ever in wealthy countries like the United States, the majority are small businesses in linear industries that have been around for hundreds of years, such as social assistance, health, education, administrative, or consulting services. In lower-income countries, international aid agencies and nonprofits often encourage women to pursue careers in traditional handicrafts, micro-enterprise, and micro-finance. While these jobs have historically helped women escape poverty and gain financial independence, they have done little to help women realize the enormous power, influence, wealth, and ability to transform the world for the better that comes from building companies, nonprofits, and solutions grounded in exponential technologies.

We need women to be working with exponential technologies today in order to be powerful leaders in the future.

Participants who enroll in our Global Solutions Program spend the first few weeks of the program learning about exponential technologies from the world’s experts and the final weeks launching new companies or nonprofits in their area of interest. We require that women (as well as men) utilize exponential technologies as a condition of the program.

In this sense, at Singularity University women start their endeavors with all of us believing and behaving in a way that assumes they can achieve global impact at the level of our world’s most legendary entrepreneurs.

Creating an Environment Where Woman Can Thrive
While challenging women to embrace exponential technologies is essential, it is also important to create an environment where women can thrive. In particular, this means ensuring women feel at home on our campus by ensuring gender diversity, aggressively addressing sexual harassment, and flipping the traditional culture from one that penalizes women, to one that values and supports them.

While women were initially only a small minority of our Global Solutions Program, in 2014, we achieved around 50% female attendance—a statistic that has since held over the years.

This is not due to a quota—every year we turn away extremely qualified women from our program (and are working on reformulating the program to allow more people to participate in the future.) While part of our recruiting success is due to the efforts of our marketing team, we also benefited from the efforts of some of our early female founders, staff, faculty, and alumnae including Susan Fonseca, Emeline Paat-Dahlstrom, Kathryn Myronuk, Lajuanda Asemota, Chiara Giovenzana, and Barbara Silva Tronseca.

As early champions of Singularity University these women not only launched diversity initiatives and personally reached out to women, but were crucial role models holding leadership roles in our community. In addition, Fonseca and Silva also both created multiple organizations and initiatives outside of (or in conjunction with) the university that produced additional pipelines of female candidates. In particular, Fonseca founded Women@TheFrontier as well as other organizations focusing on women, technology and innovation, and Silva founded BestInnovation (a woman’s accelerator in Latin America), as well as led Singularity University’s Chilean Chapter and founded the first SingularityU Summit in Latin America.

These women’s efforts in globally scaling Singularity University have been critical in ensuring woman around the world now see Singularity University as a place where they can lead and shape the future.

Also, thanks to Google (Alphabet) and many of our alumni and partners, we were able to provide full scholarships to any woman (or man) to attend our program regardless of their economic status. Google committed significant funding for full scholarships while our partners around the world also hosted numerous Global Impact Competitions, where entrepreneurs pitched their solutions to their local communities with the winners earning a full scholarship funded by our partners to attend the Global Solution Program as their prize.

Google and our partners’ support helped individuals attend our program and created a wider buzz around exponential technology and social change around the world in local communities. It led to the founding of 110 SU chapters in 55 countries.

Another vital aspect of our work in supporting women has been trying to create a harassment-free environment. Throughout the Silicon Valley, more than 60% of women convey that while they are trying to build their companies or get their work done, they are also dealing with physical and sexual harassment while being demeaned and excluded in other ways in the workplace. We have taken actions to educate and train our staff on how to deal with situations should they occur. All staff receives training on harassment when they join Singularity University, and all Global Solutions Program participants attend mandatory trainings on sexual harassment when they first arrive on campus. We also have male and female wellness counselors available that can offer support to both individuals and teams of entrepreneurs throughout the entire program.

While at a minimum our campus must be physically safe for women, we also strive to create a culture that values women and supports them in the additional challenges and expectations they face. For example, one of our 2016 female participants, Van Duesterberg, was pregnant during the program and said that instead of having people doubt her commitment to her startup or make her prove she could handle having a child and running a start-up at the same time, people went out of their way to help her.

“I was the epitome of a person not supposed to be doing a startup,” she said. “I was pregnant and would need to take care of my child. But Singularity University was supportive and encouraging. They made me feel super-included and that it was possible to do both. I continue to come back to campus even though the program is over because the network welcomes me and supports me rather than shuts me out because of my physical limitations. Rather than making me feel I had to prove myself, everyone just understood me and supported me, whether it was bringing me healthy food or recommending funders.”

Another strength that we have in supporting women is that after the Global Solutions Program, entrepreneurs have access to a much larger ecosystem.

Many entrepreneurs partake in SU Ventures, which can provide further support to startups as they develop, and we now have a larger community of over 200,000 people in almost every country. These members have often attended other Singularity University programs, events and are committed to our vision of the future. These women and men consist of business executives, Fortune 500 companies, investors, nonprofit and government leaders, technologists, members of the media, and other movers and shakers in the world. They have made introductions for our founders, collaborated with them on business ventures, invested in them and showcased their work at high profile events around the world.

Building for the Future
While our Global Solutions Program is making great strides in supporting female entrepreneurs, there is always more work to do. We are now focused on achieving the same degree of female participation across all of our programs and actively working to recruit and feature more female faculty and speakers on stage. As our community grows and scales around the world, we are also intent at how to best uphold our values and policies around sexual harassment across diverse locations and cultures. And like all businesses everywhere, we are focused on recruiting more women to serve at senior leadership levels within SU. As we make our way forward, we hope that you will join us in boldly leading this change and recognizing the genius and power of female entrepreneurs.

Meet Some of Our Female Moonshots
While we have many remarkable female entrepreneurs in the Singularity University community, the list below features a few of the women who have founded or co-founded companies at the Global Solutions Program that have launched new industries and are on their way to changing the way our world works for millions if not billions of people.

Jessica Scorpio co-founded Getaround in 2009. Getaround was one of the first car-sharing service platforms allowing anyone to rent out their car using a smartphone app. GetAround was a revolutionary idea in 2009, not only because smartphones and apps were still in their infancy, but because it was unthinkable that a technology startup could disrupt the major entrenched car, transport, and logistics companies. Scorpio’s early insights and pioneering entrepreneurial work brought to life new ways that humans relate to car sharing and the future self-driving car industry. Scorpio and Getaround have won numerous awards, and Getaround now serves over 200,000 members.

Paola Santana co-founded Matternet in 2011, which pioneered the commercial drone transport industry. In 2011, only military, hobbyists or the film industry used drones. Matternet demonstrated that drones could be used for commercial transport in short point-to-point deliveries for high-value goods laying the groundwork for drone transport around the world as well as some of the early thinking behind the future flying car industry. Santana was also instrumental in shaping regulations for the use of commercial drones around the world, making the industry possible.

Sara Naseri co-founded Qurasense in 2014, a life sciences start-up that analyzes women’s health through menstrual blood allowing women to track their health every month. Naseri is shifting our understanding of women’s menstrual blood as a waste product and something “not to be talked about,” to a rich, non-invasive, abundant source of information about women’s health.

Abi Ramanan co-founded ImpactVision in 2015, a software company that rapidly analyzes the quality and characteristics of food through hyperspectral images. Her long-term vision is to digitize food supply chains to reduce waste and fraud, given that one-third of all food is currently wasted before it reaches our plates. Ramanan is also helping the world understand that hyperspectral technology can be used in many industries to help us “see the unseen” and augment our ability to sense and understand what is happening around us in a much more sophisticated way.

Anita Schjøll Brede and Maria Ritola co-founded Iris AI in 2015, an artificial intelligence company that is building an AI research assistant that drastically improves the efficiency of R&D research and breaks down silos between different industries. Their long-term vision is for Iris AI to become smart enough that she will become a scientist herself. Fast Company named Iris AI one of the 10 most innovative artificial intelligence companies for 2017.

Hla Hla Win co-founded 360ed in 2016, a startup that conducts teacher training and student education through virtual reality and augmented reality in Myanmar. They have already connected teachers from 128 private schools in Myanmar with schools teaching 21st-century skills in Silicon Valley and around the world. Their moonshot is to build a platform where any teacher in the world can share best practices in teachers’ training. As they succeed, millions of children in some of the poorest parts of the world will have access to a 21st-century education.

Min FitzGerald and Van Duesterberg cofounded Nutrigene in 2017, a startup that ships freshly formulated, tailor-made supplement elixirs directly to consumers. Their long-term vision is to help people optimize their health using actionable data insights, so people can take a guided, tailored approaching to thriving into longevity.

Anna Skaya co-founded Basepaws in 2016, which created the first genetic test for cats and is building a community of citizen scientist pet owners. They are creating personalized pet products such as supplements, therapeutics, treats, and toys while also developing a database of genetic data for future research that will help both humans and pets over the long term.

Olivia Ramos co-founded Deep Blocks in 2016, a startup using artificial intelligence to integrate and streamline the processes of architecture, pre-construction, and real estate. As digital technologies, artificial intelligence, and robotics advance, it no longer makes sense for these industries to exist separately. Ramos recognized the tremendous value and efficiency that it is now possible to unlock with exponential technologies and creating an integrated industry in the future.

Please also visit our website to learn more about other female entrepreneurs, staff and faculty who are pioneering the future through exponential technologies. Continue reading

Posted in Human Robots

#431544 Dash Robotics Acquires Bots Alive for ...

Two of our favorite robot companies are teaming up to make intelligent little robots that you can actually buy Continue reading

Posted in Human Robots

#430761 How Robots Are Getting Better at Making ...

The multiverse of science fiction is populated by robots that are indistinguishable from humans. They are usually smarter, faster, and stronger than us. They seem capable of doing any job imaginable, from piloting a starship and battling alien invaders to taking out the trash and cooking a gourmet meal.
The reality, of course, is far from fantasy. Aside from industrial settings, robots have yet to meet The Jetsons. The robots the public are exposed to seem little more than over-sized plastic toys, pre-programmed to perform a set of tasks without the ability to interact meaningfully with their environment or their creators.
To paraphrase PayPal co-founder and tech entrepreneur Peter Thiel, we wanted cool robots, instead we got 140 characters and Flippy the burger bot. But scientists are making progress to empower robots with the ability to see and respond to their surroundings just like humans.
Some of the latest developments in that arena were presented this month at the annual Robotics: Science and Systems Conference in Cambridge, Massachusetts. The papers drilled down into topics that ranged from how to make robots more conversational and help them understand language ambiguities to helping them see and navigate through complex spaces.
Improved Vision
Ben Burchfiel, a graduate student at Duke University, and his thesis advisor George Konidaris, an assistant professor of computer science at Brown University, developed an algorithm to enable machines to see the world more like humans.
In the paper, Burchfiel and Konidaris demonstrate how they can teach robots to identify and possibly manipulate three-dimensional objects even when they might be obscured or sitting in unfamiliar positions, such as a teapot that has been tipped over.
The researchers trained their algorithm by feeding it 3D scans of about 4,000 common household items such as beds, chairs, tables, and even toilets. They then tested its ability to identify about 900 new 3D objects just from a bird’s eye view. The algorithm made the right guess 75 percent of the time versus a success rate of about 50 percent for other computer vision techniques.
In an email interview with Singularity Hub, Burchfiel notes his research is not the first to train machines on 3D object classification. How their approach differs is that they confine the space in which the robot learns to classify the objects.
“Imagine the space of all possible objects,” Burchfiel explains. “That is to say, imagine you had tiny Legos, and I told you [that] you could stick them together any way you wanted, just build me an object. You have a huge number of objects you could make!”
The infinite possibilities could result in an object no human or machine might recognize.
To address that problem, the researchers had their algorithm find a more restricted space that would host the objects it wants to classify. “By working in this restricted space—mathematically we call it a subspace—we greatly simplify our task of classification. It is the finding of this space that sets us apart from previous approaches.”
Following Directions
Meanwhile, a pair of undergraduate students at Brown University figured out a way to teach robots to understand directions better, even at varying degrees of abstraction.
The research, led by Dilip Arumugam and Siddharth Karamcheti, addressed how to train a robot to understand nuances of natural language and then follow instructions correctly and efficiently.
“The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all,” says Arumugam in a press release.
In this project, the young researchers crowdsourced instructions for moving a virtual robot through an online domain. The space consisted of several rooms and a chair, which the robot was told to manipulate from one place to another. The volunteers gave various commands to the robot, ranging from general (“take the chair to the blue room”) to step-by-step instructions.
The researchers then used the database of spoken instructions to teach their system to understand the kinds of words used in different levels of language. The machine learned to not only follow instructions but to recognize the level of abstraction. That was key to kickstart its problem-solving abilities to tackle the job in the most appropriate way.
The research eventually moved from virtual pixels to a real place, using a Roomba-like robot that was able to respond to instructions within one second 90 percent of the time. Conversely, when unable to identify the specificity of the task, it took the robot 20 or more seconds to plan a task about 50 percent of the time.
One application of this new machine-learning technique referenced in the paper is a robot worker in a warehouse setting, but there are many fields that could benefit from a more versatile machine capable of moving seamlessly between small-scale operations and generalized tasks.
“Other areas that could possibly benefit from such a system include things from autonomous vehicles… to assistive robotics, all the way to medical robotics,” says Karamcheti, responding to a question by email from Singularity Hub.
More to Come
These achievements are yet another step toward creating robots that see, listen, and act more like humans. But don’t expect Disney to build a real-life Westworld next to Toon Town anytime soon.
“I think we’re a long way off from human-level communication,” Karamcheti says. “There are so many problems preventing our learning models from getting to that point, from seemingly simple questions like how to deal with words never seen before, to harder, more complicated questions like how to resolve the ambiguities inherent in language, including idiomatic or metaphorical speech.”
Even relatively verbose chatbots can run out of things to say, Karamcheti notes, as the conversation becomes more complex.
The same goes for human vision, according to Burchfiel.
While deep learning techniques have dramatically improved pattern matching—Google can find just about any picture of a cat—there’s more to human eyesight than, well, meets the eye.
“There are two big areas where I think perception has a long way to go: inductive bias and formal reasoning,” Burchfiel says.
The former is essentially all of the contextual knowledge people use to help them reason, he explains. Burchfiel uses the example of a puddle in the street. People are conditioned or biased to assume it’s a puddle of water rather than a patch of glass, for instance.
“This sort of bias is why we see faces in clouds; we have strong inductive bias helping us identify faces,” he says. “While it sounds simple at first, it powers much of what we do. Humans have a very intuitive understanding of what they expect to see, [and] it makes perception much easier.”
Formal reasoning is equally important. A machine can use deep learning, in Burchfiel’s example, to figure out the direction any river flows once it understands that water runs downhill. But it’s not yet capable of applying the sort of human reasoning that would allow us to transfer that knowledge to an alien setting, such as figuring out how water moves through a plumbing system on Mars.
“Much work was done in decades past on this sort of formal reasoning… but we have yet to figure out how to merge it with standard machine-learning methods to create a seamless system that is useful in the actual physical world.”
Robots still have a lot to learn about being human, which should make us feel good that we’re still by far the most complex machines on the planet.
Image Credit: Alex Knight via Unsplash Continue reading

Posted in Human Robots