Tag Archives: tokyo

#436414 Japanese Researchers Teaching Robots to ...

When mobile manipulators eventually make it into our homes, self-repair is going to be a very important function. Hopefully, these robots will be durable enough that they won’t need to be repaired very often, but from time to time they’ll almost certainly need minor maintenance. At Humanoids 2019 in Toronto, researchers from the University of Tokyo showed how they taught a PR2 to perform simple repairs on itself by tightening its own screws. And using that skill, the robot was also able to augment itself, adding accessories like hooks to help it carry more stuff. Clever robot!

To keep things simple, the researchers provided the robot with CAD data that tells it exactly where all of its screws are.

At the moment, the robot can’t directly detect on its own whether a particular screw needs tightening, although it can tell if its physical pose doesn’t match its digital model, which suggests that something has gone wonky. It can also check its screws autonomously from time to time, or rely on a human physically pointing out that it has a screw loose, using the human’s finger location to identify which screw it is. Another challenge is that most robots, like most humans, are limited in the areas on themselves that they can comfortably reach. So to tighten up everything, they might have to find themselves a robot friend to help, just like humans help each other put on sunblock.

The actual tightening is either super easy or quite complicated, depending on the location and orientation of the screw. If the robot is lucky, it can just use its continuous wrist rotation for tightening, but if a screw is located in a tight position that requires an Allen wrench, the robot has to regrasp the tool over and over as it incrementally tightens the screw.

Image: University of Tokyo

In one experiment, the researchers taught a PR2 robot to attach a hook to one of its shoulders. The robot uses one hand to grasp the hook and another hand to grasp a screwdriver. The researchers tested the hook by hanging a tote bag on it.

The other neat trick that a robot can do once it can tighten screws on its own body is to add new bits of hardware to itself. PR2 was thoughtfully designed with mounting points on its shoulders (or maybe technically its neck) and head, and it turns out that it can reach these points with its manipulators, allowing to modify itself, as the researchers explain:

When PR2 wants to have a lot of things, the only two hands are not enough to realize that. So we let PR2 to use a bag the same as we put it on our shoulder. PR2 started attaching the hook whose pose is calculated with self CAD data with a driver on his shoulder in order to put a bag on his shoulder. PR2 finished attaching the hook, and the people put a lot of cans in a tote bag and put it on PR2’s shoulder.

“Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver,” by Takayuki Murooka, Kei Okada, and Masayuki Inaba from the University of Tokyo, was presented at Humanoids 2019 in Toronto, Canada. Continue reading

Posted in Human Robots

#436190 What Is the Uncanny Valley?

Have you ever encountered a lifelike humanoid robot or a realistic computer-generated face that seem a bit off or unsettling, though you can’t quite explain why?

Take for instance AVA, one of the “digital humans” created by New Zealand tech startup Soul Machines as an on-screen avatar for Autodesk. Watching a lifelike digital being such as AVA can be both fascinating and disconcerting. AVA expresses empathy through her demeanor and movements: slightly raised brows, a tilt of the head, a nod.

By meticulously rendering every lash and line in its avatars, Soul Machines aimed to create a digital human that is virtually undistinguishable from a real one. But to many, rather than looking natural, AVA actually looks creepy. There’s something about it being almost human but not quite that can make people uneasy.

Like AVA, many other ultra-realistic avatars, androids, and animated characters appear stuck in a disturbing in-between world: They are so lifelike and yet they are not “right.” This void of strangeness is known as the uncanny valley.

Uncanny Valley: Definition and History
The uncanny valley is a concept first introduced in the 1970s by Masahiro Mori, then a professor at the Tokyo Institute of Technology. The term describes Mori’s observation that as robots appear more humanlike, they become more appealing—but only up to a certain point. Upon reaching the uncanny valley, our affinity descends into a feeling of strangeness, a sense of unease, and a tendency to be scared or freaked out.

Image: Masahiro Mori

The uncanny valley as depicted in Masahiro Mori’s original graph: As a robot’s human likeness [horizontal axis] increases, our affinity towards the robot [vertical axis] increases too, but only up to a certain point. For some lifelike robots, our response to them plunges, and they appear repulsive or creepy. That’s the uncanny valley.

In his seminal essay for Japanese journal Energy, Mori wrote:

I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley, which I call the uncanny valley.

Later in the essay, Mori describes the uncanny valley by using an example—the first prosthetic hands:

One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and the hand becomes uncanny.

In an interview with IEEE Spectrum, Mori explained how he came up with the idea for the uncanny valley:

“Since I was a child, I have never liked looking at wax figures. They looked somewhat creepy to me. At that time, electronic prosthetic hands were being developed, and they triggered in me the same kind of sensation. These experiences had made me start thinking about robots in general, which led me to write that essay. The uncanny valley was my intuition. It was one of my ideas.”

Uncanny Valley Examples
To better illustrate how the uncanny valley works, here are some examples of the phenomenon. Prepare to be freaked out.

1. Telenoid

Photo: Hiroshi Ishiguro/Osaka University/ATR

Taking the top spot in the “creepiest” rankings of IEEE Spectrum’s Robots Guide, Telenoid is a robotic communication device designed by Japanese roboticist Hiroshi Ishiguro. Its bald head, lifeless face, and lack of limbs make it seem more alien than human.

2. Diego-san

Photo: Andrew Oh/Javier Movellan/Calit2

Engineers and roboticists at the University of California San Diego’s Machine Perception Lab developed this robot baby to help parents better communicate with their infants. At 1.2 meters (4 feet) tall and weighing 30 kilograms (66 pounds), Diego-san is a big baby—bigger than an average 1-year-old child.

“Even though the facial expression is sophisticated and intuitive in this infant robot, I still perceive a false smile when I’m expecting the baby to appear happy,” says Angela Tinwell, a senior lecturer at the University of Bolton in the U.K. and author of The Uncanny Valley in Games and Animation. “This, along with a lack of detail in the eyes and forehead, can make the baby appear vacant and creepy, so I would want to avoid those ‘dead eyes’ rather than interacting with Diego-san.”

​3. Geminoid HI

Photo: Osaka University/ATR/Kokoro

Another one of Ishiguro’s creations, Geminoid HI is his android replica. He even took hair from his own scalp to put onto his robot twin. Ishiguro says he created Geminoid HI to better understand what it means to be human.

4. Sophia

Photo: Mikhail Tereshchenko/TASS/Getty Images

Designed by David Hanson of Hanson Robotics, Sophia is one of the most famous humanoid robots. Like Soul Machines’ AVA, Sophia displays a range of emotional expressions and is equipped with natural language processing capabilities.

5. Anthropomorphized felines

The uncanny valley doesn’t only happen with robots that adopt a human form. The 2019 live-action versions of the animated film The Lion King and the musical Cats brought the uncanny valley to the forefront of pop culture. To some fans, the photorealistic computer animations of talking lions and singing cats that mimic human movements were just creepy.

Are you feeling that eerie sensation yet?

Uncanny Valley: Science or Pseudoscience?
Despite our continued fascination with the uncanny valley, its validity as a scientific concept is highly debated. The uncanny valley wasn’t actually proposed as a scientific concept, yet has often been criticized in that light.

Mori himself said in his IEEE Spectrum interview that he didn’t explore the concept from a rigorous scientific perspective but as more of a guideline for robot designers:

Pointing out the existence of the uncanny valley was more of a piece of advice from me to people who design robots rather than a scientific statement.

Karl MacDorman, an associate professor of human-computer interaction at Indiana University who has long studied the uncanny valley, interprets the classic graph not as expressing Mori’s theory but as a heuristic for learning the concept and organizing observations.

“I believe his theory is instead expressed by his examples, which show that a mismatch in the human likeness of appearance and touch or appearance and motion can elicit a feeling of eeriness,” MacDorman says. “In my own experiments, I have consistently reproduced this effect within and across sense modalities. For example, a mismatch in the human realism of the features of a face heightens eeriness; a robot with a human voice or a human with a robotic voice is eerie.”

How to Avoid the Uncanny Valley
Unless you intend to create creepy characters or evoke a feeling of unease, you can follow certain design principles to avoid the uncanny valley. “The effect can be reduced by not creating robots or computer-animated characters that combine features on different sides of a boundary—for example, human and nonhuman, living and nonliving, or real and artificial,” MacDorman says.

To make a robot or avatar more realistic and move it beyond the valley, Tinwell says to ensure that a character’s facial expressions match its emotive tones of speech, and that its body movements are responsive and reflect its hypothetical emotional state. Special attention must also be paid to facial elements such as the forehead, eyes, and mouth, which depict the complexities of emotion and thought. “The mouth must be modeled and animated correctly so the character doesn’t appear aggressive or portray a ‘false smile’ when they should be genuinely happy,” she says.

For Christoph Bartneck, an associate professor at the University of Canterbury in New Zealand, the goal is not to avoid the uncanny valley, but to avoid bad character animations or behaviors, stressing the importance of matching the appearance of a robot with its ability. “We’re trained to spot even the slightest divergence from ‘normal’ human movements or behavior,” he says. “Hence, we often fail in creating highly realistic, humanlike characters.”

But he warns that the uncanny valley appears to be more of an uncanny cliff. “We find the likability to increase and then crash once robots become humanlike,” he says. “But we have never observed them ever coming out of the valley. You fall off and that’s it.” Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436178 Within 10 Years, We’ll Travel by ...

What’s faster than autonomous vehicles and flying cars?

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX’s Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes.

But wait, it gets even better…

As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of “robotic avatars” will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.

Let’s dive in.

Hyperloop One: LA to SF in 35 Minutes
Did you know that Hyperloop was the brainchild of Elon Musk? Just one in a series of transportation innovations from a man determined to leave his mark on the industry.

In 2013, in an attempt to shorten the long commute between Los Angeles and San Francisco, the California state legislature proposed a $68 billion budget allocation for what appeared to be the slowest and most expensive bullet train in history.

Musk was outraged. The cost was too high, the train too sluggish. Teaming up with a group of engineers from Tesla and SpaceX, he published a 58-page concept paper for “The Hyperloop,” a high-speed transportation network that used magnetic levitation to propel passenger pods down vacuum tubes at speeds of up to 670 mph. If successful, it would zip you across California in 35 minutes—just enough time to watch your favorite sitcom.

In January 2013, venture capitalist Shervin Pishevar, with Musk’s blessing, started Hyperloop One with myself, Jim Messina (former White House Deputy Chief of Staff for President Obama), and tech entrepreneurs Joe Lonsdale and David Sacks as founding board members. A couple of years after that, the Virgin Group invested in this idea, Richard Branson was elected chairman, and Virgin Hyperloop One was born.

“The Hyperloop exists,” says Josh Giegel, co-founder and chief technology officer of Hyperloop One, “because of the rapid acceleration of power electronics, computational modeling, material sciences, and 3D printing.”

Thanks to these convergences, there are now ten major Hyperloop One projects—in various stages of development—spread across the globe. Chicago to DC in 35 minutes. Pune to Mumbai in 25 minutes. According to Giegel, “Hyperloop is targeting certification in 2023. By 2025, the company plans to have multiple projects under construction and running initial passenger testing.”

So think about this timetable: Autonomous car rollouts by 2020. Hyperloop certification and aerial ridesharing by 2023. By 2025—going on vacation might have a totally different meaning. Going to work most definitely will.

But what’s faster than Hyperloop?

Rocket Travel
As if autonomous vehicles, flying cars, and Hyperloop weren’t enough, in September of 2017, speaking at the International Astronautical Congress in Adelaide, Australia, Musk promised that for the price of an economy airline ticket, his rockets will fly you “anywhere on Earth in under an hour.”

Musk wants to use SpaceX’s megarocket, Starship, which was designed to take humans to Mars, for terrestrial passenger delivery. The Starship travels at 17,500 mph. It’s an order of magnitude faster than the supersonic jet Concorde.

Think about what this actually means: New York to Shanghai in 39 minutes. London to Dubai in 29 minutes. Hong Kong to Singapore in 22 minutes.

So how real is the Starship?

“We could probably demonstrate this [technology] in three years,” Musk explained, “but it’s going to take a while to get the safety right. It’s a high bar. Aviation is incredibly safe. You’re safer on an airplane than you are at home.”

That demonstration is proceeding as planned. In September 2017, Musk announced his intentions to retire his current rocket fleet, both the Falcon 9 and Falcon Heavy, and replace them with the Starships in the 2020s.

Less than a year later, LA mayor Eric Garcetti tweeted that SpaceX was planning to break ground on an 18-acre rocket production facility near the port of Los Angeles. And April of this year marked an even bigger milestone: the very first test flights of the rocket.

Thus, sometime in the next decade or so, “off to Europe for lunch” may become a standard part of our lexicon.

Avatars
Wait, wait, there’s one more thing.

While the technologies we’ve discussed will decimate the traditional transportation industry, there’s something on the horizon that will disrupt travel itself. What if, to get from A to B, you didn’t have to move your body? What if you could quote Captain Kirk and just say “Beam me up, Scotty”?

Well, shy of the Star Trek transporter, there’s the world of avatars.

An avatar is a second self, typically in one of two forms. The digital version has been around for a couple of decades. It emerged from the video game industry and was popularized by virtual world sites like Second Life and books-turned-blockbusters like Ready Player One.

A VR headset teleports your eyes and ears to another location, while a set of haptic sensors shifts your sense of touch. Suddenly, you’re inside an avatar inside a virtual world. As you move in the real world, your avatar moves in the virtual.

Use this technology to give a lecture and you can do it from the comfort of your living room, skipping the trip to the airport, the cross-country flight, and the ride to the conference center.

Robots are the second form of avatars. Imagine a humanoid robot that you can occupy at will. Maybe, in a city far from home, you’ve rented the bot by the minute—via a different kind of ridesharing company—or maybe you have spare robot avatars located around the country.

Either way, put on VR goggles and a haptic suit, and you can teleport your senses into that robot. This allows you to walk around, shake hands, and take action—all without leaving your home.

And like the rest of the tech we’ve been talking about, even this future isn’t far away.

In 2018, entrepreneur Dr. Harry Kloor recommended to All Nippon Airways (ANA), Japan’s largest airline, the design of an Avatar XPRIZE. ANA then funded this vision to the tune of $10 million to speed the development of robotic avatars. Why? Because ANA knows this is one of the technologies likely to disrupt their own airline industry, and they want to be ready.

ANA recently announced its “newme” robot that humans can use to virtually explore new places. The colorful robots have Roomba-like wheeled bases and cameras mounted around eye-level, which capture surroundings viewable through VR headsets.

If the robot was stationed in your parents’ home, you could cruise around the rooms and chat with your family at any time of day. After revealing the technology at Tokyo’s Combined Exhibition of Advanced Technologies in October, ANA plans to deploy 1,000 newme robots by 2020.

With virtual avatars like newme, geography, distance, and cost will no longer limit our travel choices. From attractions like the Eiffel Tower or the pyramids of Egypt to unreachable destinations like the moon or deep sea, we will be able to transcend our own physical limits, explore the world and outer space, and access nearly any experience imaginable.

Final Thoughts
Individual car ownership has enjoyed over a century of ascendancy and dominance.

The first real threat it faced—today’s ride-sharing model—only showed up in the last decade. But that ridesharing model won’t even get ten years to dominate. Already, it’s on the brink of autonomous car displacement, which is on the brink of flying car disruption, which is on the brink of Hyperloop and rockets-to-anywhere decimation. Plus, avatars.

The most important part: All of this change will happen over the next ten years. Welcome to a future of human presence where the only constant is rapid change.

Note: This article—an excerpt from my next book The Future Is Faster Than You Think, co-authored with Steven Kotler, to be released January 28th, 2020—originally appeared on my tech blog at diamandis.com. Read the original article here.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Virgin Hyperloop One Continue reading

Posted in Human Robots

#435750 Video Friday: Amazon CEO Jeff Bezos ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
Let us know if you have suggestions for next week, and enjoy today’s videos.

Last week at the re:MARS conference, Amazon CEO and aspiring supervillain Jeff Bezos tried out this pair of dexterous robotic hands, which he described as “weirdly natural” to operate. The system combines Shadow Robot’s anthropomorphic robot hands with SynTouch’s biomimetic tactile sensors and HaptX’s haptic feedback gloves.

After playing with the robot, Bezos let out his trademark evil laugh.

[ Shadow Robot ]

The RoboMaster S1 is DJI’s advanced new educational robot that opens the door to limitless learning and entertainment. Develop programming skills, get familiar with AI technology, and enjoy thrilling FPV driving with games and competition. From young learners to tech enthusiasts, get ready to discover endless possibilities with the RoboMaster S1.

[ DJI ]

It’s very impressive to see DLR’s humanoid robot Toro dynamically balancing, even while being handed heavy objects, pushing things, and using multi-contact techniques to kick a fire extinguisher for some reason.

The paper is in RA-L, and you can find it at the link below.

[ RA-L ] via [ DLR ]

Thanks Maximo!

Is it just me, or does the Suzumori Endo Robotics Laboratory’s Super Dragon arm somehow just keep getting longer?

Suzumori Endo Lab, Tokyo Tech developed a 10 m-long articulated manipulator for investigation inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Plants. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. This work was published in IEEE Robotics and Automation Letters and Transactions of the JSME.

[ Suzumori Endo Lab ]

From what I can make out thanks to Google Translate, this cute little robot duck (developed by Nissan) helps minimize weeds in rice fields by stirring up the water.

[ Nippon.com ]

Confidence in your robot is when you can just casually throw it off of a balcony 15 meters up.

[ SUTD ]

You had me at “we’re going to completely submerge this apple in chocolate syrup.”

[ Soft Robotics Inc ]

In the mid 2020s, the European Space Agency is planning on sending a robotic sample return mission to the Moon. It’s called Heracles, after the noted snake-strangler of Greek mythology.

[ ESA ]

Rethink Robotics is still around, they’re just much more German than before. And Sawyer is still hard at work stealing jobs from humans.

[ Rethink Robotics ]

The reason to watch this new video of the Ghost Robotics Vision 60 quadruped is for the 3 seconds worth of barrel roll about 40 seconds in.

[ Ghost Robotics ]

This is a relatively low-altitude drop for Squishy Robotics’ tensegrity scout, but it still cool to watch a robot that’s resilient enough to be able to fall and just not worry about it.

[ Squishy Robotics ]

We control here the Apptronik DRACO bipedal robot for unsupported dynamic locomotion. DRACO consists of a 10 DoF lower body with liquid cooled viscoelastic actuators to reduce weight, increase payload, and achieve fast dynamic walking. Control and walking algorithms are designed by UT HCRL Laboratory.

I think all robot videos should be required to start with two “oops” clips followed by a “for real now” clip.

[ Apptronik ]

SAKE’s EZGripper manages to pick up a wrench, and also pick up a raspberry without turning it into instajam.

[ SAKE Robotics ]

And now: the robotic long-tongued piggy, courtesy Sony Toio.

[ Toio ]

In this video the ornithopter developed inside the ERC Advanced Grant GRIFFIN project performs its first flight. This projects aims to develop a flapping wing system with manipulation and human interaction capabilities.

A flapping-wing system with manipulation and human interaction capabilities, you say? I would like to subscribe to your newsletter.

[ GRVC ]

KITECH’s robotic hands and arms can manipulate, among other things, five boxes of Elmos. I’m not sure about the conversion of Elmos to Snuffleupaguses, although it turns out that one Snuffleupagus is exactly 1,000 pounds.

[ Ji-Hun Bae ]

The Australian Centre for Field Robotics (ACFR) has been working on agricultural robots for almost a decade, and this video sums up a bunch of the stuff that they’ve been doing, even if it’s more amusing than practical at times.

[ ACFR ]

ROS 2 is great for multi-robot coordination, like when you need your bubble level to stay really, really level.

[ Acutronic Robotics ]

We don’t hear iRobot CEO Colin Angle give a lot of talks, so this recent one (from Amazon’s re:MARS conference) is definitely worth a listen, especially considering how much innovation we’ve seen from iRobot recently.

Colin Angle, founder and CEO of iRobot, has unveil a series of breakthrough innovations in home robots from iRobot. For the first time on stage, he will discuss and demonstrate what it takes to build a truly intelligent system of robots that work together to accomplish more within the home – and enable that home, and the devices within it, to work together as one.

[ iRobot ]

In the latest episode of Robots in Depth, Per speaks with Federico Pecora from the Center for Applied Autonomous Sensor Systems at Örebro University in Sweden.

Federico talks about working on AI and service robotics. In this area he has worked on planning, especially focusing on why a particular goal is the one that the robot should work on. To make robots as useful and user friendly as possible, he works on inferring the goal from the robot’s environment so that the user does not have to tell the robot everything.

Federico has also worked with AI robotics planning in industry to optimize results. Managing the relative importance of tasks is another challenging area there. In this context, he works on automating not only a single robot for its goal, but an entire fleet of robots for their collective goal. We get to hear about how these techniques are being used in warehouse operations, in mines and in agriculture.

[ Robots in Depth ] Continue reading

Posted in Human Robots