Tag Archives: tiny

#435541 This Giant AI Chip Is the Size of an ...

People say size doesn’t matter, but when it comes to AI the makers of the largest computer chip ever beg to differ. There are plenty of question marks about the gargantuan processor, but its unconventional design could herald an innovative new era in silicon design.

Computer chips specialized to run deep learning algorithms are a booming area of research as hardware limitations begin to slow progress, and both established players and startups are vying to build the successor to the GPU, the specialized graphics chip that has become the workhorse of the AI industry.

On Monday Californian startup Cerebras came out of stealth mode to unveil an AI-focused processor that turns conventional wisdom on its head. For decades chip makers have been focused on making their products ever-smaller, but the Wafer Scale Engine (WSE) is the size of an iPad and features 1.2 trillion transistors, 400,000 cores, and 18 gigabytes of on-chip memory.

The Cerebras Wafer-Scale Engine (WSE) is the largest chip ever built. It measures 46,225 square millimeters and includes 1.2 trillion transistors. Optimized for artificial intelligence compute, the WSE is shown here for comparison alongside the largest graphics processing unit. Image Credit: Used with permission from Cerebras Systems.
There is a method to the madness, though. Currently, getting enough cores to run really large-scale deep learning applications means connecting banks of GPUs together. But shuffling data between these chips is a major drain on speed and energy efficiency because the wires connecting them are relatively slow.

Building all 400,000 cores into the same chip should get round that bottleneck, but there are reasons it’s not been done before, and Cerebras has had to come up with some clever hacks to get around those obstacles.

Regular computer chips are manufactured using a process called photolithography to etch transistors onto the surface of a wafer of silicon. The wafers are inches across, so multiple chips are built onto them at once and then split up afterwards. But at 8.5 inches across, the WSE uses the entire wafer for a single chip.

The problem is that while for standard chip-making processes any imperfections in manufacturing will at most lead to a few processors out of several hundred having to be ditched, for Cerebras it would mean scrapping the entire wafer. To get around this the company built in redundant circuits so that even if there are a few defects, the chip can route around them.

The other big issue with a giant chip is the enormous amount of heat the processors can kick off—so the company has had to design a proprietary water-cooling system. That, along with the fact that no one makes connections and packaging for giant chips, means the WSE won’t be sold as a stand-alone component, but as part of a pre-packaged server incorporating the cooling technology.

There are no details on costs or performance so far, but some customers have already been testing prototypes, and according to Cerebras results have been promising. CEO and co-founder Andrew Feldman told Fortune that early tests show they are reducing training time from months to minutes.

We’ll have to wait until the first systems ship to customers in September to see if those claims stand up. But Feldman told ZDNet that the design of their chip should help spur greater innovation in the way engineers design neural networks. Many cornerstones of this process—for instance, tackling data in batches rather than individual data points—are guided more by the hardware limitations of GPUs than by machine learning theory, but their chip will do away with many of those obstacles.

Whether that turns out to be the case or not, the WSE might be the first indication of an innovative new era in silicon design. When Google announced it’s AI-focused Tensor Processing Unit in 2016 it was a wake-up call for chipmakers that we need some out-of-the-box thinking to square the slowing of Moore’s Law with skyrocketing demand for computing power.

It’s not just tech giants’ AI server farms driving innovation. At the other end of the spectrum, the desire to embed intelligence in everyday objects and mobile devices is pushing demand for AI chips that can run on tiny amounts of power and squeeze into the smallest form factors.

These trends have spawned renewed interest in everything from brain-inspired neuromorphic chips to optical processors, but the WSE also shows that there might be mileage in simply taking a sideways look at some of the other design decisions chipmakers have made in the past rather than just pumping ever more transistors onto a chip.

This gigantic chip might be the first exhibit in a weird and wonderful new menagerie of exotic, AI-inspired silicon.

Image Credit: Used with permission from Cerebras Systems. Continue reading

Posted in Human Robots

#435308 Brain-Machine Interfaces Are Getting ...

Elon Musk grabbed a lot of attention with his July 16 announcement that his company Neuralink plans to implant electrodes into the brains of people with paralysis by next year. Their first goal is to create assistive technology to help people who can’t move or are unable to communicate.

If you haven’t been paying attention, brain-machine interfaces (BMIs) that allow people to control robotic arms with their thoughts might sound like science fiction. But science and engineering efforts have already turned it into reality.

In a few research labs around the world, scientists and physicians have been implanting devices into the brains of people who have lost the ability to control their arms or hands for over a decade. In our own research group at the University of Pittsburgh, we’ve enabled people with paralyzed arms and hands to control robotic arms that allow them to grasp and move objects with relative ease. They can even experience touch-like sensations from their own hand when the robot grasps objects.

At its core, a BMI is pretty straightforward. In your brain, microscopic cells called neurons are sending signals back and forth to each other all the time. Everything you think, do and feel as you interact with the world around you is the result of the activity of these 80 billion or so neurons.

If you implant a tiny wire very close to one of these neurons, you can record the electrical activity it generates and send it to a computer. Record enough of these signals from the right area of the brain and it becomes possible to control computers, robots, or anything else you might want, simply by thinking about moving. But doing this comes with tremendous technical challenges, especially if you want to record from hundreds or thousands of neurons.

What Neuralink Is Bringing to the Table
Elon Musk founded Neuralink in 2017, aiming to address these challenges and raise the bar for implanted neural interfaces.

Perhaps the most impressive aspect of Neuralink’s system is the breadth and depth of their approach. Building a BMI is inherently interdisciplinary, requiring expertise in electrode design and microfabrication, implantable materials, surgical methods, electronics, packaging, neuroscience, algorithms, medicine, regulatory issues, and more. Neuralink has created a team that spans most, if not all, of these areas.

With all of this expertise, Neuralink is undoubtedly moving the field forward, and improving their technology rapidly. Individually, many of the components of their system represent significant progress along predictable paths. For example, their electrodes, that they call threads, are very small and flexible; many researchers have tried to harness those properties to minimize the chance the brain’s immune response would reject the electrodes after insertion. Neuralink has also developed high-performance miniature electronics, another focus area for labs working on BMIs.

Often overlooked in academic settings, however, is how an entire system would be efficiently implanted in a brain.

Neuralink’s BMI requires brain surgery. This is because implanted electrodes that are in intimate contact with neurons will always outperform non-invasive electrodes where neurons are far away from the electrodes sitting outside the skull. So, a critical question becomes how to minimize the surgical challenges around getting the device into a brain.

Maybe the most impressive aspect of Neuralink’s announcement was that they created a 3,000-electrode neural interface where electrodes could be implanted at a rate of between 30 and 200 per minute. Each thread of electrodes is implanted by a sophisticated surgical robot that essentially acts like a sewing machine. This all happens while specifically avoiding blood vessels that blanket the surface of the brain. The robotics and imaging that enable this feat, with tight integration to the entire device, is striking.

Neuralink has thought through the challenge of developing a clinically viable BMI from beginning to end in a way that few groups have done, though they acknowledge that many challenges remain as they work towards getting this technology into human patients in the clinic.

Figuring Out What More Electrodes Gets You
The quest for implantable devices with thousands of electrodes is not only the domain of private companies. DARPA, the NIH BRAIN Initiative, and international consortiums are working on neurotechnologies for recording and stimulating in the brain with goals of tens of thousands of electrodes. But what might scientists do with the information from 1,000, 3,000, or maybe even 100,000 neurons?

At some level, devices with more electrodes might not actually be necessary to have a meaningful impact in people’s lives. Effective control of computers for access and communication, of robotic limbs to grasp and move objects as well as of paralyzed muscles is already happening—in people. And it has been for a number of years.

Since the 1990s, the Utah Array, which has just 100 electrodes and is manufactured by Blackrock Microsystems, has been a critical device in neuroscience and clinical research. This electrode array is FDA-cleared for temporary neural recording. Several research groups, including our own, have implanted Utah Arrays in people that lasted multiple years.

Currently, the biggest constraints are related to connectors, electronics, and system-level engineering, not the implanted electrode itself—although increasing the electrodes’ lifespan to more than five years would represent a significant advance. As those technical capabilities improve, it might turn out that the ability to accurately control computers and robots is limited more by scientists’ understanding of what the neurons are saying—that is, the neural code—than by the number of electrodes on the device.

Even the most capable implanted system, and maybe the most capable devices researchers can reasonably imagine, might fall short of the goal of actually augmenting skilled human performance. Nevertheless, Neuralink’s goal of creating better BMIs has the potential to improve the lives of people who can’t move or are unable to communicate. Right now, Musk’s vision of using BMIs to meld physical brains and intelligence with artificial ones is no more than a dream.

So, what does the future look like for Neuralink and other groups creating implantable BMIs? Devices with more electrodes that last longer and are connected to smaller and more powerful wireless electronics are essential. Better devices themselves, however, are insufficient. Continued public and private investment in companies and academic research labs, as well as innovative ways for these groups to work together to share technologies and data, will be necessary to truly advance scientists’ understanding of the brain and deliver on the promise of BMIs to improve peoples’ lives.

While researchers need to keep the future societal implications of advanced neurotechnologies in mind—there’s an essential role for ethicists and regulation—BMIs could be truly transformative as they help more people overcome limitations caused by injury or disease in the brain and body.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: UPMC/Pitt Health Sciences, / CC BY-NC-ND Continue reading

Posted in Human Robots

#435172 DARPA’s New Project Is Investing ...

When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

Here’s what you need to know.

Radical Upgrades
The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

“A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

“Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

The Tools
Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

Other projects in N3 are just are ambitious.

The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

Four-Year Miracle
Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

“DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

The question is, now that we know what’s in store, how should the rest of us prepare?

Image Credit: With permission from DARPA N3 project. Continue reading

Posted in Human Robots

#435159 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Can Now Beat Us at Multiplayer Games Too
Cade Metz | The New York Times
“DeepMind’s project is part of a broad effort to build artificial intelligence that can play enormously complex, three-dimensional video games, including Quake III, Dota 2 and StarCraft II. Many researchers believe that success in the virtual arena will eventually lead to automated systems with improved abilities in the real world.”

ROBOTICS
Tiny Robots Carry Stem Cells Through a Mouse
Emily Waltz | IEEE Spectrum
“Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper, published [May 29] in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.” [Video shows microbots navigating a microfluidic chip. MRI could not be used to image the mouse as the bots navigate magnetically.]

COMPUTING
How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
Emerging Technology From the arXiv | MIT Technology Review
“[Two researchers] have found a more efficient way for quantum computers to perform the code-breaking calculations, reducing the resources they require by orders of magnitude. Consequently, these machines are significantly closer to reality than anyone suspected.” [The arXiv is a pre-print server for research that has not yet been peer reviewed.]

AUTOMATION
Lyft Has Completed 55,000 Self Driving Rides in Las Vegas
Christine Fisher | Engadget
“One year ago, Lyft launched its self-driving ride service in Las Vegas. Today, the company announced its 30-vehicle fleet has made 55,000 trips. That makes it the largest commercial program of its kind in the US.”

TRANSPORTATION
Flying Car Startup Alaka’i Bets Hydrogen Can Outdo Batteries
Eric Adams | Wired
“Alaka’i says the final product will be able to fly for up to four hours and cover 400 miles on a single load of fuel, which can be replenished in 10 minutes at a hydrogen fueling station. It has built a functional, full-scale prototype that will make its first flight ‘imminently,’ a spokesperson says.”

ETHICS
The World Economic Forum Wants to Develop Global Rules for AI
Will Knight | MIT Technology Review
“This week, AI experts, politicians, and CEOs will gather to ask an important question: Can the United States, China, or anyone else agree on how artificial intelligence should be used and controlled?”

SPACE
Building a Rocket in a Garage to Take on SpaceX and Blue Origin
Jackson Ryan | CNET
“While billionaire entrepreneurs like SpaceX’s Elon Musk and Blue Origin’s Jeff Bezos push the boundaries of human spaceflight and exploration, a legion of smaller private startups around the world have been developing their own rocket technology to launch lighter payloads into orbit.”

Image Credit: Kevin Crosby / Unsplash Continue reading

Posted in Human Robots

#435140 This Week’s Awesome Stories From ...

GENETICS
Gene Therapy Might Have Its First Blockbuster
Antonio Regalado | MIT Technology Review
“…drug giant Novartis expects to win approval to launch what it says will be the first ‘blockbuster’ gene-replacement treatment. A blockbuster is any drug with more than $1 billion in sales each year. The treatment, called Zolgensma, is able to save infants born with spinal muscular atrophy (SMA) type 1, a degenerative disease that usually kills within two years.”

ARTIFICIAL INTELLIGENCE
AI Took a Test to Detect Lung Cancer. It Got an A.
Denise Grady | The New York Times
“Computers were as good or better than doctors at detecting tiny lung cancers on CT scans, in a study by researchers from Google and several medical centers. The technology is a work in progress, not ready for widespread use, but the new report, published Monday in the journal Nature Medicine, offers a glimpse of the future of artificial intelligence in medicine.”

ROBOTICS
The Rise and Reign of Starship, the World’s First Robotic Delivery Provider
Luke Dormehl | Digital Trends
“[Starship’s] delivery robots have travelled a combined 200,000 miles, carried out 50,000 deliveries, and been tested in over 100 cities in 20 countries. It is a regular fixture not just in multiple neighborhoods but also university campuses.”

SPACE
Elon Musk Just Ignited the Race to Build the Space Internet
Jonathan O’Callaghan | Wired
“It’s estimated that about 3.3 billion people lack access to the internet, but Elon Musk is trying to change that. On Thursday, May 23—after two cancelled launches the week before—SpaceX launched 60 Starlink satellites on a Falcon 9 rocket from Cape Canaveral, in Florida, as part of the firm’s mission to bring low-cost, high-speed internet to the world.”

VIRTUAL REALITY
The iPod of VR Is Here, and You Should Try It
Mark Wilson | Fast Company
“In nearly 15 years of writing about cutting-edge technology, I’ve never seen a single product line get so much better so fast. With [the Oculus] Quest, there are no PCs required. There are no wires to run. All you do is grab the cloth headset and pull it around your head.”

FUTURE OF FOOD
Impossible Foods’ Rising Empire of Almost Meat
Chris Ip | Engadget
“Impossible says it wants to ultimately create a parallel universe of ersatz animal products from steak to eggs. …Yet as Impossible ventures deeper into the culinary uncanny valley, it also needs society to discard a fundamental cultural idea that dates back millennia and accept a new truth: Meat doesn’t have to come from animals.”

LONGEVITY
Can We Live Longer but Stay Younger?
Adam Gopnik | The New Yorker
“With greater longevity, the quest to avoid the infirmities of aging is more urgent than ever.”

PRIVACY
Facial Recognition Has Already Reached Its Breaking Point
Lily Hay Newman | Wired
“As facial recognition technologies have evolved from fledgling projects into powerful software platforms, researchers and civil liberties advocates have been issuing warnings about the potential for privacy erosions. Those mounting fears came to a head Wednesday in Congress.”

Image Credit: Andrush / Shutterstock.com Continue reading

Posted in Human Robots