Tag Archives: times

#437550 McDonald’s Is Making a Plant-Based ...

Fast-food chains have been doing what they can in recent years to health-ify their menus. For better or worse, burgers, fries, fried chicken, roast beef sandwiches, and the like will never go out of style—this is America, after all—but consumers are increasingly gravitating towards healthier options.

One of those options is plant-based foods, and not just salads and veggie burgers, but “meat” made from plants. Burger King was one of the first big fast-food chains to jump on the plant-based meat bandwagon, introducing its Impossible Whopper in restaurants across the country last year after a successful pilot program. Dunkin’ (formerly Dunkin’ Donuts) uses plant-based patties in its Beyond Sausage breakfast sandwiches.

But there’s one big player in the fast food market that’s been oddly missing from the plant-based trend—until now. McDonald’s announced last week that it will debut a sandwich called the McPlant in key US markets next year. Unlike Dunkin’ and Burger King, who both worked with Impossible Foods to make their plant-based products, McDonald’s worked with Los Angeles-based Beyond Meat, which makes chicken, beef, and pork-like products from plants.

According to Bloomberg, though, McDonald’s decided to forego a partnership with Beyond Meat in favor of creating its own plant-based products. Imitation chicken nuggets and plant-based breakfast sandwiches are in its plans as well.

McDonald’s has bounced back impressively from its March low (when the coronavirus lockdowns first happened in the US). Last month the company’s stock reached a 52-week high of $231 per share (as compared to its low in March of $124 per share).

To keep those numbers high and make it as easy as possible for customers to get their hands on plant-based burgers and all the traditional menu items too, the fast food chain is investing in tech and integrating more digital offerings into its restaurants.

McDonald’s has acquired a couple artificial intelligence companies in the last year and a half; Dynamic Yield is an Israeli company that uses AI to personalize customers’ experiences, and McDonald’s is using Dynamic Yield’s tech on its smart menu boards, for example by customizing the items displayed on the drive-thru menu based on the weather and the time of day, and recommending additional items based on what a customer asks for first (i.e. “You know what would go great with that coffee? Some pancakes!”).

The fast food giant also bought Apprente, a startup that uses AI in voice-based ordering platforms. McDonald’s is using the tech to help automate its drive-throughs.

In addition to these investments, the company plans to launch a digital hub called MyMcDonald’s that will include a loyalty program, start doing deliveries of its food through its mobile app, and test different ways of streamlining the food order and pickup process—with many of the new ideas geared towards pandemic times, like express pickup lanes for people who placed digital orders and restaurants with drive-throughs for delivery and pickup orders only.

Plant-based meat patties appear to be just one small piece of McDonald’s modernization plans. Those of us who were wondering what they were waiting for should have known—one of the most-recognized fast food chains in the world wasn’t about to let itself get phased out. It seems it will only be a matter of time until you can pull out your phone, make a few selections, and have a burger made from plants—with a side of fries made from more plants—show up at your door a little while later. Drive-throughs, shouting your order into a fuzzy speaker with a confused teen on the other end, and burgers made from beef? So 2019.

Image Credit: McDonald’s Continue reading

Posted in Human Robots

#437491 3.2 Billion Images and 720,000 Hours of ...

Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.

Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”

The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.

A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours

In the video, Biden says “Hello, Minnesota.”

The event did indeed happen in MN — signs on stage read MN

But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v

— Donie O'Sullivan (@donie) November 1, 2020

If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?

While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.

Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.

For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.

Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.

Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.

Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr

— Dope Historic Pics (@dopehistoricpic) December 20, 2013

This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.

In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.

“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.

This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5

— Willie's Reserve (@WilliesReserve) January 21, 2019

Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.

Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.

You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a

— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020

Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.

Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh

— EVC Music (@EVCMusicUK) January 6, 2020

Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.

Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.

These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY

Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.

We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.

Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP

But what about edits that only alter pixel values such as color, saturation, or contrast?

One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”

Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).

Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.

Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:

Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.

Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.

Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”

Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.

Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.

If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.

The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:

Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?

Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Simon Steinberger from Pixabay Continue reading

Posted in Human Robots

#437460 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
A Radical New Technique Lets AI Learn With Practically No Data
Karen Hao | MIT Technology Review
“Shown photos of a horse and a rhino, and told a unicorn is something in between, [children] can recognize the mythical creature in a picture book the first time they see it. …Now a new paper from the University of Waterloo in Ontario suggests that AI models should also be able to do this—a process the researchers call ‘less than one’-shot, or LO-shot, learning.”

FUTURE
Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

HEALTH
The Race for a Super-Antibody Against the Coronavirus
Apoorva Mandavilli | The New York Times
“Dozens of companies and academic groups are racing to develop antibody therapies. …But some scientists are betting on a dark horse: Prometheus, a ragtag group of scientists who are months behind in the competition—and yet may ultimately deliver the most powerful antibody.”

SPACE
How to Build a Spacecraft to Save the World
Daniel Oberhaus | Wired
“The goal of the Double Asteroid Redirection Test, or DART, is to slam the [spacecraft] into a small asteroid orbiting a larger asteroid 7 million miles from Earth. …It should be able to change the asteroid’s orbit just enough to be detectable from Earth, demonstrating that this kind of strike could nudge an oncoming threat out of Earth’s way. Beyond that, everything is just an educated guess, which is exactly why NASA needs to punch an asteroid with a robot.”

TRANSPORTATION
Inside Gravity’s Daring Mission to Make Jetpacks a Reality
Oliver Franklin-Wallis | Wired
“The first time someone flies a jetpack, a curious thing happens: just as their body leaves the ground, their legs start to flail. …It’s as if the vestibular system can’t quite believe what’s happening. This isn’t natural. Then suddenly, thrust exceeds weight, and—they’re aloft. …It’s that moment, lift-off, that has given jetpacks an enduring appeal for over a century.”

FUTURE OF FOOD
Inside Singapore’s Huge Bet on Vertical Farming
Megan Tatum | MIT Technology Review
“…to cram all [of Singapore’s] gleaming towers and nearly 6 million people into a land mass half the size of Los Angeles, it has sacrificed many things, including food production. Farms make up no more than 1% of its total land (in the United States it’s 40%), forcing the small city-state to shell out around $10 billion each year importing 90% of its food. Here was an example of technology that could change all that.”

COMPUTING
The Effort to Build the Mathematical Library of the Future
Kevin Hartnett | Quanta
“Digitizing mathematics is a longtime dream. The expected benefits range from the mundane—computers grading students’ homework—to the transcendent: using artificial intelligence to discover new mathematics and find new solutions to old problems.”

Image credit: Kevin Mueller / Unsplash Continue reading

Posted in Human Robots

#437407 Nvidia’s Arm Acquisition Brings the ...

Artificial intelligence and mobile computing have been two of the most disruptive technologies of this century. The unification of the two companies that made them possible could have wide-ranging consequences for the future of computing.

California-based Nvidia’s graphics processing units (GPUs) have powered the deep learning revolution ever since Google researchers discovered in 2011 that they could run neural networks far more efficiently than conventional CPUs. UK company Arm’s energy-efficient chip designs have dominated the mobile and embedded computing markets for even longer.

Now the two will join forces after the American company announced a $40 billion deal to buy Arm from its Japanese owner, Softbank. In a press release announcing the deal, Nvidia touted its potential to rapidly expand the reach of AI into all areas of our lives.

“In the years ahead, trillions of computers running AI will create a new internet-of-things that is thousands of times larger than today’s internet-of-people,” said Nvidia founder and CEO Jensen Huang. “Uniting NVIDIA’s AI computing capabilities with the vast ecosystem of Arm’s CPU, we can advance computing from the cloud, smartphones, PCs, self-driving cars and robotics, to edge IoT, and expand AI computing to every corner of the globe.”

There are good reasons to believe the hype. The two companies are absolutely dominant in their respective fields—Nvidia’s GPUs support more than 97 percent of AI computing infrastructure offered by big cloud service providers, and Arm’s chips power more than 90 percent of smartphones. And there’s little overlap in their competencies, which means the relationship could be a truly symbiotic one.

“I think the deal “fits like a glove” in that Arm plays in areas that Nvidia does not or isn’t that successful, while NVIDIA plays in many places Arm doesn’t or isn’t that successful,” analyst Patrick Moorhead wrote in Forbes.

One of the most obvious directions would be to expand Nvidia’s AI capabilities to the kind of low-power edge devices that Arm excels in. There’s growing demand for AI in devices like smartphones, wearables, cars, and drones, where transmitting data to the cloud for processing is undesirable either for reasons of privacy or speed.

But there might also be fruitful exchanges in the other direction. Huang told Moorhead a major focus would be bringing Arm’s expertise in energy efficiency to the data center. That’s a big concern for technology companies whose electricity bills and green credentials are taking a battering thanks to the huge amounts of energy required to run millions of computer chips around the clock.

The deal may not be plain sailing, though, most notably due to the two companies’ differing business models. While Nvidia sells ready-made processors, Arm simply creates chip designs and then licenses them to other companies who can then customize them to their particular hardware needs. It operates on an open-licence basis whereby any company with the necessary cash can access its designs.

As a result, its designs are found in products built by hundreds of companies that license its innovations, including Apple, Samsung, Huawei, Qualcomm, and even Nvidia. Some, including two of the company’s co-founders, have raised concerns that the purchase by Nvidia, which competes with many of these other companies, could harm the neutrality that has been central to its success.

It’s possible this could push more companies towards RISC-V, an open-source technology developed by researchers at the University of California at Berkeley that rivals Arm’s and is not owned by any one company. However, there are plenty of reasons why most companies still prefer arm over the less feature-rich open-source option, and it might take a considerable push to convince Arm’s customers to jump ship.

The deal will also have to navigate some thorny political issues. Unions, politicians, and business leaders in the UK have voiced concerns that it could lead to the loss of high-tech jobs, and government sources have suggested conditions could be placed on the deal.

Regulators in other countries could also put a spanner in the works. China is concerned that if Arm becomes US-owned, many of the Chinese companies that rely on its technology could become victims of export restrictions as the China-US trade war drags on. South Korea is also wary that the deal could create a new technology juggernaut that could dent Samsung’s growth in similar areas.

Nvidia has made commitments to keep Arm’s headquarters in the UK, which it says should lessen concerns around jobs and export restrictions. It’s also pledged to open a new world-class technology center in Cambridge and build a state-of-the-art AI supercomputer powered by Arm’s chips there. Whether the deal goes through still hangs in the balance, but of it does it could spur a whole new wave of AI innovation.

Image Credit: Nvidia Continue reading

Posted in Human Robots

#437345 Moore’s Law Lives: Intel Says Chips ...

If you weren’t already convinced the digital world is taking over, you probably are now.

To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.

Six decades ago, this world didn’t exist.

A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.

But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.

In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.

“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”

Why the optimism?

Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.

Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.

The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).

Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.

FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.

Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.

This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.

Koduri said 3D chip stacking will quadruple transistor density.

A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.

Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”

But whether Intel’s vision pans out as planned is far from certain.

Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.

The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?

That said, demand for more computing power isn’t going anywhere.

Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.

There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.

Image credit: Laura Ockel / Unsplash Continue reading

Posted in Human Robots