Tag Archives: there
#431015 Finish Him! MegaBots’ Giant Robot Duel ...
It began two years ago when MegaBots co-founders Matt Oehrlein and Gui Cavalcanti donned American flags as capes and challenged Suidobashi Heavy Industries to a giant robot duel in a YouTube video that immediately went viral.
The battle proposed: MegaBots’ 15-foot tall, 1,200-pound MK2 robot vs. Suidobashi’s 9,000-pound robot, KURATAS. Oehrlein and Cavalcanti first discovered the KURATAS robot in a listing on Amazon with a million-dollar price tag.
In an equally flamboyant response video, Suidobashi CEO and founder Kogoro Kurata accepted the challenge. (Yes, he named his robot after himself.) Both parties planned to take a year to prepare their robots for combat.
In the end, it took twice the amount of time. Nonetheless, the battle is going down this September in an undisclosed location in Japan.
Oehrlein shared more about the much-anticipated showdown during our interview at Singularity University’s Global Summit.
Two years since the initial video, MegaBots has now completed the combat-capable MK3 robot, named Eagle Prime. This new 12-ton, 16-foot-tall robot is powered by a 430-horsepower Corvette engine and requires two human pilots.
It’s also the robot they recently shipped to Japan to take on KURATAS.
Building Eagle Prime has been no small feat. With arms and legs that each weigh as much as a car, assembling the robot takes forklifts, cranes, and a lot of caution. Fortress One, MegaBots’ headquarters in Hayward, California is where the magic happens.
In terms of “weaponry,” Eagle Prime features a giant pneumatic cannon that shoots huge paint cannonballs. Oehrlein warns, “They can shatter all the windows in a car. It’s very powerful.” A logging grapple, which looks like a giant claw and exerts 3,000 pounds of steel-crushing force, has also been added to the robot.
“It’s a combination of range combat, using the paint balls to maybe blind cameras on the other robot or take out sensitive electronics, and then closing in with the claw and trying to disable their systems at close range,” Oehrlein explains.
Safety systems include a cockpit roll cage for the two pilots, five-point safety seatbelt harnesses, neck restraints, helmets, and flame retardant suits.
Co-founder, Matt Oehrlein, inside the cockpit of MegaBots’ Eagle Prime giant robot.
Oehrlein and Cavalcanti have also spent considerable time inside Eagle Prime practicing battlefield tactics and maneuvering the robot through obstacle courses.
Suidobashi’s robot is a bit shorter and lighter, but also a little faster, so the battle dynamics should be interesting.
You may be thinking, “Why giant dueling robots?”
MegaBots’ grand vision is a full-blown international sports league of giant fighting robots on the scale of Formula One racing. Picture a nostalgic evening sipping a beer (or three) and watching Pacific Rim- and Power Rangers-inspired robots battle—only in real life.
Eagle Prime is, in good humor, a proudly patriotic robot.
“Japan is known as a robotic powerhouse,” says Oehrlein, “I think there’s something interesting about the slightly overconfident American trying to get a foothold in the robotics space and doing it by building a bigger, louder, heavier robot, in true American fashion.”
For safety reasons, no fans will be admitted during the time of the fight. The battle will be posted after the fact on MegaBots’ YouTube channel and Facebook page.
We’ll soon find out whether this becomes another American underdog story.
In the meantime, I give my loyalty to MegaBots, and in the words of Mortal Kombat, say, “Finish him!”
via GIPHY
Image Credit: MegaBots Continue reading
#430868 These 7 Forces Are Changing the World at ...
It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.
“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading
#430855 Why Education Is the Hardest Sector of ...
We’ve all heard the warning cries: automation will disrupt entire industries and put millions of people out of jobs. In fact, up to 45 percent of existing jobs can be automated using current technology.
However, this may not necessarily apply to the education sector. After a detailed analysis of more than 2,000-plus work activities for more than 800 occupations, a report by McKinsey & Co states that of all the sectors examined, “…the technical feasibility of automation is lowest in education.”
There is no doubt that technological trends will have a powerful impact on global education, both by improving the overall learning experience and by increasing global access to education. Massive open online courses (MOOCs), chatbot tutors, and AI-powered lesson plans are just a few examples of the digital transformation in global education. But will robots and artificial intelligence ever fully replace teachers?
The Most Difficult Sector to Automate
While various tasks revolving around education—like administrative tasks or facilities maintenance—are open to automation, teaching itself is not.
Effective education involves more than just transfer of information from a teacher to a student. Good teaching requires complex social interactions and adaptation to the individual student’s learning needs. An effective teacher is not just responsive to each student’s strengths and weaknesses, but is also empathetic towards the student’s state of mind. It’s about maximizing human potential.
Furthermore, students don’t just rely on effective teachers to teach them the course material, but also as a source of life guidance and career mentorship. Deep and meaningful human interaction is crucial and is something that is very difficult, if not impossible, to automate.
Automating teaching is an example of a task that would require artificial general intelligence (as opposed to narrow or specific intelligence). In other words, this is the kind of task that would require an AI that understands natural human language, can be empathetic towards emotions, plan, strategize and make impactful decisions under unpredictable circumstances.
This would be the kind of machine that can do anything a human can do, and it doesn’t exist—at least, not yet.
We’re Getting There
Let’s not forget how quickly AI is evolving. Just because it’s difficult to fully automate teaching, it doesn’t mean the world’s leading AI experts aren’t trying.
Meet Jill Watson, the teaching assistant from Georgia Institute of Technology. Watson isn’t your average TA. She’s an IBM-powered artificial intelligence that is being implemented in universities around the world. Watson is able to answer students’ questions with 97 percent certainty.
Technologies like this also have applications in grading and providing feedback. Some AI algorithms are being trained and refined to perform automatic essay scoring. One project has achieved a 0.945 correlation with human graders.
All of this will have a remarkable impact on online education as we know it and dramatically increase online student retention rates.
Any student with a smartphone can access a wealth of information and free courses from universities around the world. MOOCs have allowed valuable courses to become available to millions of students. But at the moment, not all participants can receive customized feedback for their work. Currently, this is limited by manpower, but in the future that may not be the case.
What chatbots like Jill Watson allow is the opportunity for hundreds of thousands, if not millions, of students to have their work reviewed and all their questions answered at a minimal cost.
AI algorithms also have a significant role to play in personalization of education. Every student is unique and has a different set of strengths and weaknesses. Data analysis can be used to improve individual student results, assess each student’s strengths and weaknesses, and create mass-customized programs. Algorithms can analyze student data and consequently make flexible programs that adapt to the learner based on real-time feedback. According to the McKinsey Global Institute, all of this data in education could unlock between $900 billion and $1.2 trillion in global economic value.
Beyond Automated Teaching
It’s important to recognize that technological automation alone won’t fix the many issues in our global education system today. Dominated by outdated curricula, standardized tests, and an emphasis on short-term knowledge, many experts are calling for a transformation of how we teach.
It is not enough to simply automate the process. We can have a completely digital learning experience that continues to focus on outdated skills and fails to prepare students for the future. In other words, we must not only be innovative with our automation capabilities, but also with educational content, strategy, and policies.
Are we equipping students with the most important survival skills? Are we inspiring young minds to create a better future? Are we meeting the unique learning needs of each and every student? There’s no point automating and digitizing a system that is already flawed. We need to ensure the system that is being digitized is itself being transformed for the better.
Stock Media provided by davincidig / Pond5 Continue reading
#430830 Biocomputers Made From Cells Can Now ...
When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.
Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading