Tag Archives: there

#431424 A ‘Google Maps’ for the Mouse Brain ...

Ask any neuroscientist to draw you a neuron, and it’ll probably look something like a star with two tails: one stubby with extensive tree-like branches, the other willowy, lengthy and dotted with spindly spikes.
While a decent abstraction, this cartoonish image hides the uncomfortable truth that scientists still don’t know much about what many neurons actually look like, not to mention the extent of their connections.
But without untangling the jumbled mess of neural wires that zigzag across the brain, scientists are stumped in trying to answer one of the most fundamental mysteries of the brain: how individual neuronal threads carry and assemble information, which forms the basis of our thoughts, memories, consciousness, and self.
What if there was a way to virtually trace and explore the brain’s serpentine fibers, much like the way Google Maps allows us to navigate the concrete tangles of our cities’ highways?
Thanks to an interdisciplinary team at Janelia Research Campus, we’re on our way. Meet MouseLight, the most extensive map of the mouse brain ever attempted. The ongoing project has an ambitious goal: reconstructing thousands—if not more—of the mouse’s 70 million neurons into a 3D map. (You can play with it here!)
With map in hand, neuroscientists around the world can begin to answer how neural circuits are organized in the brain, and how information flows from one neuron to another across brain regions and hemispheres.
The first release, presented Monday at the Society for Neuroscience Annual Conference in Washington, DC, contains information about the shape and sizes of 300 neurons.
And that’s just the beginning.
“MouseLight’s new dataset is the largest of its kind,” says Dr. Wyatt Korff, director of project teams. “It’s going to change the textbook view of neurons.”

http://mouselight.janelia.org/assets/carousel/ML-Movie.mp4
Brain Atlas
MouseLight is hardly the first rodent brain atlasing project.
The Mouse Brain Connectivity Atlas at the Allen Institute for Brain Science in Seattle tracks neuron activity across small circuits in an effort to trace a mouse’s connectome—a complete atlas of how the firing of one neuron links to the next.
MICrONS (Machine Intelligence from Cortical Networks), the $100 million government-funded “moonshot” hopes to distill brain computation into algorithms for more powerful artificial intelligence. Its first step? Brain mapping.
What makes MouseLight stand out is its scope and level of detail.
MICrONS, for example, is focused on dissecting a cubic millimeter of the mouse visual processing center. In contrast, MouseLight involves tracing individual neurons across the entire brain.
And while connectomics outlines the major connections between brain regions, the birds-eye view entirely misses the intricacies of each individual neuron. This is where MouseLight steps in.
Slice and Dice
With a width only a fraction of a human hair, neuron projections are hard to capture in their native state. Tug or squeeze the brain too hard, and the long, delicate branches distort or even shred into bits.
In fact, previous attempts at trying to reconstruct neurons at this level of detail topped out at just a dozen, stymied by technological hiccups and sky-high costs.
A few years ago, the MouseLight team set out to automate the entire process, with a few time-saving tweaks. Here’s how it works.
After injecting a mouse with a virus that causes a handful of neurons to produce a green-glowing protein, the team treated the brain with a sugar alcohol solution. This step “clears” the brain, transforming the beige-colored organ to translucent, making it easier for light to penetrate and boosting the signal-to-background noise ratio. The brain is then glued onto a small pedestal and ready for imaging.
Building upon an established method called “two-photon microscopy,” the team then tweaked several parameters to reduce imaging time from days (or weeks) down to a fraction of that. Endearingly known as “2P” by the experts, this type of laser microscope zaps the tissue with just enough photos to light up a single plane without damaging the tissue—sharper plane, better focus, crisper image.
After taking an image, the setup activates its vibrating razor and shaves off the imaged section of the brain—a waspy slice about 200 micrometers thick. The process is repeated until the whole brain is imaged.
This setup increased imaging speed by 16 to 48 times faster than conventional microscopy, writes team leader Dr. Jayaram Chandrashekar, who published a version of the method early last year in eLife.
The resulting images strikingly highlight every crook and cranny of a neuronal branch, popping out against a pitch-black background. But pretty pictures come at a hefty data cost: each image takes up a whopping 20 terabytes of data—roughly the storage space of 4,000 DVDs, or 10,000 hours of movies.
Stitching individual images back into 3D is an image-processing nightmare. The MouseLight team used a combination of computational power and human prowess to complete this final step.
The reconstructed images are handed off to a mighty team of seven trained neuron trackers. With the help of tracing algorithms developed in-house and a keen eye, each member can track roughly a neuron a day—significantly less time than the week or so previously needed.
A Numbers Game
Even with just 300 fully reconstructed neurons, MouseLight has already revealed new secrets of the brain.
While it’s widely accepted that axons, the neurons’ outgoing projection, can span the entire length of the brain, these extra-long connections were considered relatively rare. (In fact, one previously discovered “giant neuron” was thought to link to consciousness because of its expansive connections).
Images captured from two-photon microscopy show an axon and dendrites protruding from a neuron’s cell body (sphere in center). Image Credit: Janelia Research Center, MouseLight project team
MouseLight blows that theory out of the water.
The data clearly shows that “giant neurons” are far more common than previously thought. For example, four neurons normally associated with taste had wiry branches that stretched all the way into brain areas that control movement and process touch.
“We knew that different regions of the brain talked to each other, but seeing it in 3D is different,” says Dr. Eve Marder at Brandeis University.
“The results are so stunning because they give you a really clear view of how the whole brain is connected.”
With a tested and true system in place, the team is now aiming to add 700 neurons to their collection within a year.
But appearance is only part of the story.
We can’t tell everything about a person simply by how they look. Neurons are the same: scientists can only infer so much about a neuron’s function by looking at their shape and positions. The team also hopes to profile the gene expression patterns of each neuron, which could provide more hints to their roles in the brain.
MouseLight essentially dissects the neural infrastructure that allows information traffic to flow through the brain. These anatomical highways are just the foundation. Just like Google Maps, roads form only the critical first layer of the map. Street view, traffic information and other add-ons come later for a complete look at cities in flux.
The same will happen for understanding our ever-changing brain.
Image Credit: Janelia Research Campus, MouseLight project team Continue reading

Posted in Human Robots

#431414 This Week’s Awesome Stories From ...

QUANTUM COMPUTING IBM Raises the Bar With a 50-Qubit Quantum ComputerWill Knight | MIT Technology Review “50 qubits is a significant landmark in progress toward practical quantum computers. Other systems built so far have had limited capabilities and could perform only calculations that could also be done on a conventional supercomputer. A 50-qubit machine can do things that are extremely difficult to simulate without quantum technology.”
ARTIFICIAL INTELLIGENCE AI Startup Embodied Intelligence Wants Robots to Learn From Humans in Virtual RealityEvan Ackerman | IEEE Spectrum “This is a defining problem for robotics right now: Robots can do anything you want, as long as you tell them exactly what that is, every single time… This week, Abbeel and several of his colleagues from UC Berkeley and OpenAI are announcing a new startup (with US $7 million in seed funding) called Embodied Intelligence, which will ‘enable industrial robot arms to perceive and act like humans instead of just strictly following pre-programmed trajectories.’”
TRANSPORTATION Uber’s Plan to Launch Flying Cars in LA by 2020 Really Could Take OffJack Stewart | Wired“After grabbing an elevator, passengers will tap their phones to pass through a turnstile and access the roof. Presumably they’ve been prescreened, because there’s no airport-style security in evidence. An agent in an orange vest takes a group of four passengers out to the waiting aircraft. There’s a pilot up front, and a small overhead display with the estimated arrival time.”
ROBOTICS This Robot Swarm Finishes Your Grocery Shopping in MinutesJesus Diaz | Fast Company “At an Ocado warehouse in the English town of Andover, a swarm of 1,000 robots races over a grid the size of a soccer field, filling orders and replacing stock. The new system, which went live earlier this year, can fulfill a 50-item order in under five minutes—something that used to take about two hours at human-only facilities. It’s been so successful that Ocado is now building a new warehouse that’s three times larger in Erith, southeast of London.”
BIOTECH Meet the Scientists Building a Library of Designer DrugsAngela Chen | The Verge“One of the most prominent categories of designer drugs are those intended to mimic marijuana, called synthetic cannabinoids. Marijuana, or cannabis, is widely considered one of the safest drugs, but synthetic cannabinoids are some of the most dangerous synthetic drugs.”
Image Credit: anucha sirivisansuwan / Shutterstock.com Continue reading

Posted in Human Robots

#431412 3 Dangerous Ideas From Ray Kurzweil

Recently, I interviewed my friend Ray Kurzweil at the Googleplex for a 90-minute webinar on disruptive and dangerous ideas, a prelude to my fireside chat with Ray at Abundance 360 this January.

Ray is my friend and cofounder and chancellor of Singularity University. He is also an XPRIZE trustee, a director of engineering at Google, and one of the best predictors of our exponential future.
It’s my pleasure to share with you three compelling ideas that came from our conversation.
1. The nation-state will soon be irrelevant.
Historically, we humans don’t like change. We like waking up in the morning and knowing that the world is the same as the night before.
That’s one reason why government institutions exist: to stabilize society.
But how will this change in 20 or 30 years? What role will stabilizing institutions play in a world of continuous, accelerating change?
“Institutions stick around, but they change their role in our lives,” Ray explained. “They already have. The nation-state is not as profound as it was. Religion used to direct every aspect of your life, minute to minute. It’s still important in some ways, but it’s much less important, much less pervasive. [It] plays a much smaller role in most people’s lives than it did, and the same is true for governments.”
Ray continues: “We are fantastically interconnected already. Nation-states are not islands anymore. So we’re already much more of a global community. The generation growing up today really feels like world citizens much more than ever before, because they’re talking to people all over the world, and it’s not a novelty.”
I’ve previously shared my belief that national borders have become extremely porous, with ideas, people, capital, and technology rapidly flowing between nations. In decades past, your cultural identity was tied to your birthplace. In the decades ahead, your identify is more a function of many other external factors. If you love space, you’ll be connected with fellow space-cadets around the globe more than you’ll be tied to someone born next door.
2. We’ll hit longevity escape velocity before we realize we’ve hit it.
Ray and I share a passion for extending the healthy human lifespan.
I frequently discuss Ray’s concept of “longevity escape velocity”—the point at which, for every year that you’re alive, science is able to extend your life for more than a year.
Scientists are continually extending the human lifespan, helping us cure heart disease, cancer, and eventually, neurodegenerative disease. This will keep accelerating as technology improves.
During my discussion with Ray, I asked him when he expects we’ll reach “escape velocity…”
His answer? “I predict it’s likely just another 10 to 12 years before the general public will hit longevity escape velocity.”
“At that point, biotechnology is going to have taken over medicine,” Ray added. “The next decade is going to be a profound revolution.”
From there, Ray predicts that nanorobots will “basically finish the job of the immune system,” with the ability to seek and destroy cancerous cells and repair damaged organs.
As we head into this sci-fi-like future, your most important job for the next 15 years is to stay alive. “Wear your seatbelt until we get the self-driving cars going,” Ray jokes.
The implications to society will be profound. While the scarcity-minded in government will react saying, “Social Security will be destroyed,” the more abundance-minded will realize that extending a person’s productive earning life space from 65 to 75 or 85 years old would be a massive boon to GDP.
3. Technology will help us define and actualize human freedoms.
The third dangerous idea from my conversation with Ray is about how technology will enhance our humanity, not detract from it.
You may have heard critics complain that technology is making us less human and increasingly disconnected.
Ray and I share a slightly different viewpoint: that technology enables us to tap into the very essence of what it means to be human.
“I don’t think humans even have to be biological,” explained Ray. “I think humans are the species that changes who we are.”
Ray argues that this began when humans developed the earliest technologies—fire and stone tools. These tools gave people new capabilities and became extensions of our physical bodies.
At its base level, technology is the means by which we change our environment and change ourselves. This will continue, even as the technologies themselves evolve.
“People say, ‘Well, do I really want to become part machine?’ You’re not even going to notice it,” Ray says, “because it’s going to be a sensible thing to do at each point.”
Today, we take medicine to fight disease and maintain good health and would likely consider it irresponsible if someone refused to take a proven, life-saving medicine.
In the future, this will still happen—except the medicine might have nanobots that can target disease or will also improve your memory so you can recall things more easily.
And because this new medicine works so well for so many, public perception will change. Eventually, it will become the norm… as ubiquitous as penicillin and ibuprofen are today.
In this way, ingesting nanorobots, uploading your brain to the cloud, and using devices like smart contact lenses can help humans become, well, better at being human.
Ray sums it up: “We are the species that changes who we are to become smarter and more profound, more beautiful, more creative, more musical, funnier, sexier.”
Speaking of sexuality and beauty, Ray also sees technology expanding these concepts. “In virtual reality, you can be someone else. Right now, actually changing your gender in real reality is a pretty significant, profound process, but you could do it in virtual reality much more easily and you can be someone else. A couple could become each other and discover their relationship from the other’s perspective.”
In the 2030s, when Ray predicts sensor-laden nanorobots will be able to go inside the nervous system, virtual or augmented reality will become exceptionally realistic, enabling us to “be someone else and have other kinds of experiences.”
Why Dangerous Ideas Matter
Why is it so important to discuss dangerous ideas?
I often say that the day before something is a breakthrough, it’s a crazy idea.
By consuming and considering a steady diet of “crazy ideas,” you train yourself to think bigger and bolder, a critical requirement for making impact.
As humans, we are linear and scarcity-minded.
As entrepreneurs, we must think exponentially and abundantly.
At the end of the day, the formula for a true breakthrough is equal to “having a crazy idea” you believe in, plus the passion to pursue that idea against all naysayers and obstacles.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#431389 Tech Is Becoming Emotionally ...

Many people get frustrated with technology when it malfunctions or is counterintuitive. The last thing people might expect is for that same technology to pick up on their emotions and engage with them differently as a result.
All of that is now changing. Computers are increasingly able to figure out what we’re feeling—and it’s big business.
A recent report predicts that the global affective computing market will grow from $12.2 billion in 2016 to $53.98 billion by 2021. The report by research and consultancy firm MarketsandMarkets observed that enabling technologies have already been adopted in a wide range of industries and noted a rising demand for facial feature extraction software.
Affective computing is also referred to as emotion AI or artificial emotional intelligence. Although many people are still unfamiliar with the category, researchers in academia have already discovered a multitude of uses for it.
At the University of Tokyo, Professor Toshihiko Yamasaki decided to develop a machine learning system that evaluates the quality of TED Talk videos. Of course, a TED Talk is only considered to be good if it resonates with a human audience. On the surface, this would seem too qualitatively abstract for computer analysis. But Yamasaki wanted his system to watch videos of presentations and predict user impressions. Could a machine learning system accurately evaluate the emotional persuasiveness of a speaker?
Yamasaki and his colleagues came up with a method that analyzed correlations and “multimodal features including linguistic as well as acoustic features” in a dataset of 1,646 TED Talk videos. The experiment was successful. The method obtained “a statistically significant macro-average accuracy of 93.3 percent, outperforming several competitive baseline methods.”
A machine was able to predict whether or not a person would emotionally connect with other people. In their report, the authors noted that these findings could be used for recommendation purposes and also as feedback to the presenters, in order to improve the quality of their public presentation. However, the usefulness of affective computing goes far beyond the way people present content. It may also transform the way they learn it.
Researchers from North Carolina State University explored the connection between students’ affective states and their ability to learn. Their software was able to accurately predict the effectiveness of online tutoring sessions by analyzing the facial expressions of participating students. The software tracked fine-grained facial movements such as eyebrow raising, eyelid tightening, and mouth dimpling to determine engagement, frustration, and learning. The authors concluded that “analysis of facial expressions has great potential for educational data mining.”
This type of technology is increasingly being used within the private sector. Affectiva is a Boston-based company that makes emotion recognition software. When asked to comment on this emerging technology, Gabi Zijderveld, chief marketing officer at Affectiva, explained in an interview for this article, “Our software measures facial expressions of emotion. So basically all you need is our software running and then access to a camera so you can basically record a face and analyze it. We can do that in real time or we can do this by looking at a video and then analyzing data and sending it back to folks.”
The technology has particular relevance for the advertising industry.
Zijderveld said, “We have products that allow you to measure how consumers or viewers respond to digital content…you could have a number of people looking at an ad, you measure their emotional response so you aggregate the data and it gives you insight into how well your content is performing. And then you can adapt and adjust accordingly.”
Zijderveld explained that this is the first market where the company got traction. However, they have since packaged up their core technology in software development kits or SDKs. This allows other companies to integrate emotion detection into whatever they are building.
By licensing its technology to others, Affectiva is now rapidly expanding into a wide variety of markets, including gaming, education, robotics, and healthcare. The core technology is also used in human resources for the purposes of video recruitment. The software analyzes the emotional responses of interviewees, and that data is factored into hiring decisions.
Richard Yonck is founder and president of Intelligent Future Consulting and the author of a book about our relationship with technology. “One area I discuss in Heart of the Machine is the idea of an emotional economy that will arise as an ecosystem of emotionally aware businesses, systems, and services are developed. This will rapidly expand into a multi-billion-dollar industry, leading to an infrastructure that will be both emotionally responsive and potentially exploitive at personal, commercial, and political levels,” said Yonck, in an interview for this article.
According to Yonck, these emotionally-aware systems will “better anticipate needs, improve efficiency, and reduce stress and misunderstandings.”
Affectiva is uniquely positioned to profit from this “emotional economy.” The company has already created the world’s largest emotion database. “We’ve analyzed a little bit over 4.7 million faces in 75 countries,” said Zijderveld. “This is data first and foremost, it’s data gathered with consent. So everyone has opted in to have their faces analyzed.”
The vastness of that database is essential for deep learning approaches. The software would be inaccurate if the data was inadequate. According to Zijderveld, “If you don’t have massive amounts of data of people of all ages, genders, and ethnicities, then your algorithms are going to be pretty biased.”
This massive database has already revealed cultural insights into how people express emotion. Zijderveld explained, “Obviously everyone knows that women are more expressive than men. But our data confirms that, but not only that, it can also show that women smile longer. They tend to smile more often. There’s also regional differences.”
Yonck believes that affective computing will inspire unimaginable forms of innovation and that change will happen at a fast pace.
He explained, “As businesses, software, systems, and services develop, they’ll support and make possible all sorts of other emotionally aware technologies that couldn’t previously exist. This leads to a spiral of increasingly sophisticated products, just as happened in the early days of computing.”
Those who are curious about affective technology will soon be able to interact with it.
Hubble Connected unveiled the Hubble Hugo at multiple trade shows this year. Hugo is billed as “the world’s first smart camera,” with emotion AI video analytics powered by Affectiva. The product can identify individuals, figure out how they’re feeling, receive voice commands, video monitor your home, and act as a photographer and videographer of events. Media can then be transmitted to the cloud. The company’s website describes Hugo as “a fun pal to have in the house.”
Although he sees the potential for improved efficiencies and expanding markets, Richard Yonck cautions that AI technology is not without its pitfalls.
“It’s critical that we understand we are headed into very unknown territory as we develop these systems, creating problems unlike any we’ve faced before,” said Yonck. “We should put our focus on ensuring AI develops in a way that represents our human values and ideals.”
Image Credit: Kisan / Shutterstock.com Continue reading

Posted in Human Robots

#431385 Here’s How to Get to Conscious ...

“We cannot be conscious of what we are not conscious of.” – Julian Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral Mind
Unlike the director leads you to believe, the protagonist of Ex Machina, Andrew Garland’s 2015 masterpiece, isn’t Caleb, a young programmer tasked with evaluating machine consciousness. Rather, it’s his target Ava, a breathtaking humanoid AI with a seemingly child-like naïveté and an enigmatic mind.
Like most cerebral movies, Ex Machina leaves the conclusion up to the viewer: was Ava actually conscious? In doing so, it also cleverly avoids a thorny question that has challenged most AI-centric movies to date: what is consciousness, and can machines have it?
Hollywood producers aren’t the only people stumped. As machine intelligence barrels forward at breakneck speed—not only exceeding human performance on games such as DOTA and Go, but doing so without the need for human expertise—the question has once more entered the scientific mainstream.
Are machines on the verge of consciousness?
This week, in a review published in the prestigious journal Science, cognitive scientists Drs. Stanislas Dehaene, Hakwan Lau and Sid Kouider of the Collège de France, University of California, Los Angeles and PSL Research University, respectively, argue: not yet, but there is a clear path forward.
The reason? Consciousness is “resolutely computational,” the authors say, in that it results from specific types of information processing, made possible by the hardware of the brain.
There is no magic juice, no extra spark—in fact, an experiential component (“what is it like to be conscious?”) isn’t even necessary to implement consciousness.
If consciousness results purely from the computations within our three-pound organ, then endowing machines with a similar quality is just a matter of translating biology to code.
Much like the way current powerful machine learning techniques heavily borrow from neurobiology, the authors write, we may be able to achieve artificial consciousness by studying the structures in our own brains that generate consciousness and implementing those insights as computer algorithms.
From Brain to Bot
Without doubt, the field of AI has greatly benefited from insights into our own minds, both in form and function.
For example, deep neural networks, the architecture of algorithms that underlie AlphaGo’s breathtaking sweep against its human competitors, are loosely based on the multi-layered biological neural networks that our brain cells self-organize into.
Reinforcement learning, a type of “training” that teaches AIs to learn from millions of examples, has roots in a centuries-old technique familiar to anyone with a dog: if it moves toward the right response (or result), give a reward; otherwise ask it to try again.
In this sense, translating the architecture of human consciousness to machines seems like a no-brainer towards artificial consciousness. There’s just one big problem.
“Nobody in AI is working on building conscious machines because we just have nothing to go on. We just don’t have a clue about what to do,” said Dr. Stuart Russell, the author of Artificial Intelligence: A Modern Approach in a 2015 interview with Science.
Multilayered consciousness
The hard part, long before we can consider coding machine consciousness, is figuring out what consciousness actually is.
To Dehaene and colleagues, consciousness is a multilayered construct with two “dimensions:” C1, the information readily in mind, and C2, the ability to obtain and monitor information about oneself. Both are essential to consciousness, but one can exist without the other.
Say you’re driving a car and the low fuel light comes on. Here, the perception of the fuel-tank light is C1—a mental representation that we can play with: we notice it, act upon it (refill the gas tank) and recall and speak about it at a later date (“I ran out of gas in the boonies!”).
“The first meaning we want to separate (from consciousness) is the notion of global availability,” explains Dehaene in an interview with Science. When you’re conscious of a word, your whole brain is aware of it, in a sense that you can use the information across modalities, he adds.
But C1 is not just a “mental sketchpad.” It represents an entire architecture that allows the brain to draw multiple modalities of information from our senses or from memories of related events, for example.
Unlike subconscious processing, which often relies on specific “modules” competent at a defined set of tasks, C1 is a global workspace that allows the brain to integrate information, decide on an action, and follow through until the end.
Like The Hunger Games, what we call “conscious” is whatever representation, at one point in time, wins the competition to access this mental workspace. The winners are shared among different brain computation circuits and are kept in the spotlight for the duration of decision-making to guide behavior.
Because of these features, C1 consciousness is highly stable and global—all related brain circuits are triggered, the authors explain.
For a complex machine such as an intelligent car, C1 is a first step towards addressing an impending problem, such as a low fuel light. In this example, the light itself is a type of subconscious signal: when it flashes, all of the other processes in the machine remain uninformed, and the car—even if equipped with state-of-the-art visual processing networks—passes by gas stations without hesitation.
With C1 in place, the fuel tank would alert the car computer (allowing the light to enter the car’s “conscious mind”), which in turn checks the built-in GPS to search for the next gas station.
“We think in a machine this would translate into a system that takes information out of whatever processing module it’s encapsulated in, and make it available to any of the other processing modules so they can use the information,” says Dehaene. “It’s a first sense of consciousness.”
Meta-cognition
In a way, C1 reflects the mind’s capacity to access outside information. C2 goes introspective.
The authors define the second facet of consciousness, C2, as “meta-cognition:” reflecting on whether you know or perceive something, or whether you just made an error (“I think I may have filled my tank at the last gas station, but I forgot to keep a receipt to make sure”). This dimension reflects the link between consciousness and sense of self.
C2 is the level of consciousness that allows you to feel more or less confident about a decision when making a choice. In computational terms, it’s an algorithm that spews out the probability that a decision (or computation) is correct, even if it’s often experienced as a “gut feeling.”
C2 also has its claws in memory and curiosity. These self-monitoring algorithms allow us to know what we know or don’t know—so-called “meta-memory,” responsible for that feeling of having something at the tip of your tongue. Monitoring what we know (or don’t know) is particularly important for children, says Dehaene.
“Young children absolutely need to monitor what they know in order to…inquire and become curious and learn more,” he explains.
The two aspects of consciousness synergize to our benefit: C1 pulls relevant information into our mental workspace (while discarding other “probable” ideas or solutions), while C2 helps with long-term reflection on whether the conscious thought led to a helpful response.
Going back to the low fuel light example, C1 allows the car to solve the problem in the moment—these algorithms globalize the information, so that the car becomes aware of the problem.
But to solve the problem, the car would need a “catalog of its cognitive abilities”—a self-awareness of what resources it has readily available, for example, a GPS map of gas stations.
“A car with this sort of self-knowledge is what we call having C2,” says Dehaene. Because the signal is globally available and because it’s being monitored in a way that the machine is looking at itself, the car would care about the low gas light and behave like humans do—lower fuel consumption and find a gas station.
“Most present-day machine learning systems are devoid of any self-monitoring,” the authors note.
But their theory seems to be on the right track. The few examples whereby a self-monitoring system was implemented—either within the structure of the algorithm or as a separate network—the AI has generated “internal models that are meta-cognitive in nature, making it possible for an agent to develop a (limited, implicit, practical) understanding of itself.”
Towards conscious machines
Would a machine endowed with C1 and C2 behave as if it were conscious? Very likely: a smartcar would “know” that it’s seeing something, express confidence in it, report it to others, and find the best solutions for problems. If its self-monitoring mechanisms break down, it may also suffer “hallucinations” or even experience visual illusions similar to humans.
Thanks to C1 it would be able to use the information it has and use it flexibly, and because of C2 it would know the limit of what it knows, says Dehaene. “I think (the machine) would be conscious,” and not just merely appearing so to humans.
If you’re left with a feeling that consciousness is far more than global information sharing and self-monitoring, you’re not alone.
“Such a purely functional definition of consciousness may leave some readers unsatisfied,” the authors acknowledge.
“But we’re trying to take a radical stance, maybe simplifying the problem. Consciousness is a functional property, and when we keep adding functions to machines, at some point these properties will characterize what we mean by consciousness,” Dehaene concludes.
Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots