Tag Archives: tests
#437261 How AI Will Make Drug Discovery ...
If you had to guess how long it takes for a drug to go from an idea to your pharmacy, what would you guess? Three years? Five years? How about the cost? $30 million? $100 million?
Well, here’s the sobering truth: 90 percent of all drug possibilities fail. The few that do succeed take an average of 10 years to reach the market and cost anywhere from $2.5 billion to $12 billion to get there.
But what if we could generate novel molecules to target any disease, overnight, ready for clinical trials? Imagine leveraging machine learning to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.
Welcome to the future of AI and low-cost, ultra-fast, and personalized drug discovery. Let’s dive in.
GANs & Drugs
Around 2012, computer scientist-turned-biophysicist Alex Zhavoronkov started to notice that artificial intelligence was getting increasingly good at image, voice, and text recognition. He knew that all three tasks shared a critical commonality. In each, massive datasets were available, making it easy to train up an AI.
But similar datasets were present in pharmacology. So, back in 2014, Zhavoronkov started wondering if he could use these datasets and AI to significantly speed up the drug discovery process. He’d heard about a new technique in artificial intelligence known as generative adversarial networks (or GANs). By pitting two neural nets against one another (adversarial), the system can start with minimal instructions and produce novel outcomes (generative). At the time, researchers had been using GANs to do things like design new objects or create one-of-a-kind, fake human faces, but Zhavoronkov wanted to apply them to pharmacology.
He figured GANs would allow researchers to verbally describe drug attributes: “The compound should inhibit protein X at concentration Y with minimal side effects in humans,” and then the AI could construct the molecule from scratch. To turn his idea into reality, Zhavoronkov set up Insilico Medicine on the campus of Johns Hopkins University in Baltimore, Maryland, and rolled up his sleeves.
Instead of beginning their process in some exotic locale, Insilico’s “drug discovery engine” sifts millions of data samples to determine the signature biological characteristics of specific diseases. The engine then identifies the most promising treatment targets and—using GANs—generates molecules (that is, baby drugs) perfectly suited for them. “The result is an explosion in potential drug targets and a much more efficient testing process,” says Zhavoronkov. “AI allows us to do with fifty people what a typical drug company does with five thousand.”
The results have turned what was once a decade-long war into a month-long skirmish.
In late 2018, for example, Insilico was generating novel molecules in fewer than 46 days, and this included not just the initial discovery, but also the synthesis of the drug and its experimental validation in computer simulations.
Right now, they’re using the system to hunt down new drugs for cancer, aging, fibrosis, Parkinson’s, Alzheimer’s, ALS, diabetes, and many others. The first drug to result from this work, a treatment for hair loss, is slated to start Phase I trials by the end of 2020.
They’re also in the early stages of using AI to predict the outcomes of clinical trials in advance of the trial. If successful, this technique will enable researchers to strip a bundle of time and money out of the traditional testing process.
Protein Folding
Beyond inventing new drugs, AI is also being used by other scientists to identify new drug targets—that is, the place to which a drug binds in the body and another key part of the drug discovery process.
Between 1980 and 2006, despite an annual investment of $30 billion, researchers only managed to find about five new drug targets a year. The trouble is complexity. Most potential drug targets are proteins, and a protein’s structure—meaning the way a 2D sequence of amino acids folds into a 3D protein—determines its function.
But a protein with merely a hundred amino acids (a rather small protein) can produce a googol-cubed worth of potential shapes—that’s a one followed by three hundred zeroes. This is also why protein-folding has long been considered an intractably hard problem for even the most powerful of supercomputers.
Back in 1994, to monitor supercomputers’ progress in protein-folding, a biannual competition was created. Until 2018, success was fairly rare. But then the creators of DeepMind turned their neural networks loose on the problem. They created an AI that mines enormous datasets to determine the most likely distance between a protein’s base pairs and the angles of their chemical bonds—aka, the basics of protein-folding. They called it AlphaFold.
On its first foray into the competition, contestant AIs were given 43 protein-folding problems to solve. AlphaFold got 25 right. The second-place team managed a meager three. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.
Drug Delivery
Another theater of war for improved drugs is the realm of drug delivery. Even here, converging exponential technologies are paving the way for massive implications in both human health and industry shifts.
One key contender is CRISPR, the fast-advancing gene-editing technology that stands to revolutionize synthetic biology and treatment of genetically linked diseases. And researchers have now demonstrated how this tool can be applied to create materials that shape-shift on command. Think: materials that dissolve instantaneously when faced with a programmed stimulus, releasing a specified drug at a highly targeted location.
Yet another potential boon for targeted drug delivery is nanotechnology, whereby medical nanorobots have now been used to fight incidences of cancer. In a recent review of medical micro- and nanorobotics, lead authors (from the University of Texas at Austin and University of California, San Diego) found numerous successful tests of in vivo operation of medical micro- and nanorobots.
Drugs From the Future
Covid-19 is uniting the global scientific community with its urgency, prompting scientists to cast aside nation-specific territorialism, research secrecy, and academic publishing politics in favor of expedited therapeutic and vaccine development efforts. And in the wake of rapid acceleration across healthcare technologies, Big Pharma is an area worth watching right now, no matter your industry. Converging technologies will soon enable extraordinary strides in longevity and disease prevention, with companies like Insilico leading the charge.
Riding the convergence of massive datasets, skyrocketing computational power, quantum computing, cognitive surplus capabilities, and remarkable innovations in AI, we are not far from a world in which personalized drugs, delivered directly to specified targets, will graduate from science fiction to the standard of care.
Rejuvenational biotechnology will be commercially available sooner than you think. When I asked Alex for his own projection, he set the timeline at “maybe 20 years—that’s a reasonable horizon for tangible rejuvenational biotechnology.”
How might you use an extra 20 or more healthy years in your life? What impact would you be able to make?
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2021 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)
This article originally appeared on diamandis.com. Read the original article here.
Image Credit: andreas160578 from Pixabay Continue reading
#437258 This Startup Is 3D Printing Custom ...
Around 1.9 million people in the US are currently living with limb loss. The trauma of losing a limb is just the beginning of what amputees have to face, with the sky-high cost of prosthetics making their circumstance that much more challenging.
Prosthetics can run over $50,000 for a complex limb (like an arm or a leg) and aren’t always covered by insurance. As if shelling out that sum one time wasn’t costly enough, kids’ prosthetics need to be replaced as they outgrow them, meaning the total expense can reach hundreds of thousands of dollars.
A startup called Unlimited Tomorrow is trying to change this, and using cutting-edge technology to do so. Based in Rhinebeck, New York, a town about two hours north of New York City, the company was founded by 23-year-old Easton LaChappelle. He’d been teaching himself the basics of robotics and building prosthetics since grade school (his 8th grade science fair project was a robotic arm) and launched his company in 2014.
After six years of research and development, the company launched its TrueLimb product last month, describing it as an affordable, next-generation prosthetic arm using a custom remote-fitting process where the user never has to leave home.
The technologies used for TrueLimb’s customization and manufacturing are pretty impressive, in that they both cut costs and make the user’s experience a lot less stressful.
For starters, the entire purchase, sizing, and customization process for the prosthetic can be done remotely. Here’s how it works. First, prospective users fill out an eligibility form and give information about their residual limb. If they’re a qualified candidate for a prosthetic, Unlimited Tomorrow sends them a 3D scanner, which they use to scan their residual limb.
The company uses the scans to design a set of test sockets (the component that connects the residual limb to the prosthetic), which are mailed to the user. The company schedules a video meeting with the user for them to try on and discuss the different sockets, with the goal of finding the one that’s most comfortable; new sockets can be made based on the information collected during the video consultation. The user selects their skin tone from a swatch with 450 options, then Unlimited Tomorrow 3D prints and assembles the custom prosthetic and tests it before shipping it out.
“We print the socket, forearm, palm, and all the fingers out of durable nylon material in full color,” LaChappelle told Singularity Hub in an email. “The only components that aren’t 3D printed are the actuators, tendons, electronics, batteries, sensors, and the nuts and bolts. We are an extreme example of final use 3D printing.”
Unlimited Tomorrow’s website lists TrueLimb’s cost as “as low as $7,995.” When you consider the customization and capabilities of the prosthetic, this is incredibly low. According to LaChappelle, the company created a muscle sensor that picks up muscle movement at a higher resolution than the industry standard electromyography sensors. The sensors read signals from nerves in the residual limb used to control motions like fingers bending. This means that when a user thinks about bending a finger, the nerve fires and the prosthetic’s sensors can detect the signal and translate it into the action.
“Working with children using our device, I’ve witnessed a physical moment where the brain “clicks” and starts moving the hand rather than focusing on moving the muscles,” LaChappelle said.
The cost savings come both from the direct-to-consumer model and the fact that Unlimited Tomorrow doesn’t use any outside suppliers. “We create every piece of our product,” LaChappelle said. “We don’t rely on another prosthetic manufacturer to make expensive sensors or electronics. By going direct to consumer, we cut out all the middlemen that usually drive costs up.” Similar devices on the market can cost up to $100,000.
Unlimited Tomorrow is primarily focused on making prosthetics for kids; when they outgrow their first TrueLimb, they send it back, where the company upcycles the expensive quality components and integrates them into a new customized device.
Unlimited Tomorrow isn’t the first to use 3D printing for prosthetics. Florida-based Limbitless Solutions does so too, and industry experts believe the technology is the future of artificial limbs.
“I am constantly blown away by this tech,” LaChappelle said. “We look at technology as the means to augment the human body and empower people.”
Image Credit: Unlimited Tomorrow Continue reading
#437202 Scientists Used Dopamine to Seamlessly ...
In just half a decade, neuromorphic devices—or brain-inspired computing—already seem quaint. The current darling? Artificial-biological hybrid computing, uniting both man-made computer chips and biological neurons seamlessly into semi-living circuits.
It sounds crazy, but a new study in Nature Materials shows that it’s possible to get an artificial neuron to communicate directly with a biological one using not just electricity, but dopamine—a chemical the brain naturally uses to change how neural circuits behave, most known for signaling reward.
Because these chemicals, known as “neurotransmitters,” are how biological neurons functionally link up in the brain, the study is a dramatic demonstration that it’s possible to connect artificial components with biological brain cells into a functional circuit.
The team isn’t the first to pursue hybrid neural circuits. Previously, a different team hooked up two silicon-based artificial neurons with a biological one into a circuit using electrical protocols alone. Although a powerful demonstration of hybrid computing, the study relied on only one-half of the brain’s computational ability: electrical computing.
The new study now tackles the other half: chemical computing. It adds a layer of compatibility that lays the groundwork not just for brain-inspired computers, but also for brain-machine interfaces and—perhaps—a sort of “cyborg” future. After all, if your brain can’t tell the difference between an artificial neuron and your own, could you? And even if you did, would you care?
Of course, that scenario is far in the future—if ever. For now, the team, led by Dr. Alberto Salleo, professor of materials science and engineering at Stanford University, collectively breathed a sigh of relief that the hybrid circuit worked.
“It’s a demonstration that this communication melding chemistry and electricity is possible,” said Salleo. “You could say it’s a first step toward a brain-machine interface, but it’s a tiny, tiny very first step.”
Neuromorphic Computing
The study grew from years of work into neuromorphic computing, or data processing inspired by the brain.
The blue-sky idea was inspired by the brain’s massive parallel computing capabilities, along with vast energy savings. By mimicking these properties, scientists reasoned, we could potentially turbo-charge computing. Neuromorphic devices basically embody artificial neural networks in physical form—wouldn’t hardware that mimics how the brain processes information be even more efficient and powerful?
These explorations led to novel neuromorphic chips, or artificial neurons that “fire” like biological ones. Additional work found that it’s possible to link these chips up into powerful circuits that run deep learning with ease, with bioengineered communication nodes called artificial synapses.
As a potential computing hardware replacement, these systems have proven to be incredibly promising. Yet scientists soon wondered: given their similarity to biological brains, can we use them as “replacement parts” for brains that suffer from traumatic injuries, aging, or degeneration? Can we hook up neuromorphic components to the brain to restore its capabilities?
Buzz & Chemistry
Theoretically, the answer’s yes.
But there’s a huge problem: current brain-machine interfaces only use electrical signals to mimic neural computation. The brain, in contrast, has two tricks up its sleeve: electricity and chemicals, or electrochemical.
Within a neuron, electricity travels up its incoming branches, through the bulbous body, then down the output branches. When electrical signals reach the neuron’s outgoing “piers,” dotted along the output branch, however, they hit a snag. A small gap exists between neurons, so to get to the other side, the electrical signals generally need to be converted into little bubble ships, packed with chemicals, and set sail to the other neuronal shore.
In other words, without chemical signals, the brain can’t function normally. These neurotransmitters don’t just passively carry information. Dopamine, for example, can dramatically change how a neural circuit functions. For an artificial-biological hybrid neural system, the absence of chemistry is like nixing international cargo vessels and only sticking with land-based trains and highways.
“To emulate biological synaptic behavior, the connectivity of the neuromorphic device must be dynamically regulated by the local neurotransmitter activity,” the team said.
Let’s Get Electro-Chemical
The new study started with two neurons: the upstream, an immortalized biological cell that releases dopamine; and the downstream, an artificial neuron that the team previously introduced in 2017, made of a mix of biocompatible and electrical-conducting materials.
Rather than the classic neuron shape, picture more of a sandwich with a chunk bitten out in the middle (yup, I’m totally serious). Each of the remaining parts of the sandwich is a soft electrode, made of biological polymers. The “bitten out” part has a conductive solution that can pass on electrical signals.
The biological cell sits close to the first electrode. When activated, it dumps out boats of dopamine, which drift to the electrode and chemically react with it—mimicking the process of dopamine docking onto a biological neuron. This, in turn, generates a current that’s passed on to the second electrode through the conductive solution channel. When this current reaches the second electrode, it changes the electrode’s conductance—that is, how well it can pass on electrical information. This second step is analogous to docked dopamine “ships” changing how likely it is that a biological neuron will fire in the future.
In other words, dopamine release from the biological neuron interacts with the artificial one, so that the chemicals change how the downstream neuron behaves in a somewhat lasting way—a loose mimic of what happens inside the brain during learning.
But that’s not all. Chemical signaling is especially powerful in the brain because it’s flexible. Dopamine, for example, only grabs onto the downstream neurons for a bit before it returns back to its upstream neuron—that is, recycled or destroyed. This means that its effect is temporary, giving the neural circuit breathing room to readjust its activity.
The Stanford team also tried reconstructing this quirk in their hybrid circuit. They crafted a microfluidic channel that shuttles both dopamine and its byproduct away from the artificial neurons after they’ve done their job for recycling.
Putting It All Together
After confirming that biological cells can survive happily on top of the artificial one, the team performed a few tests to see if the hybrid circuit could “learn.”
They used electrical methods to first activate the biological dopamine neuron, and watched the artificial one. Before the experiment, the team wasn’t quite sure what to expect. Theoretically, it made sense that dopamine would change the artificial neuron’s conductance, similar to learning. But “it was hard to know whether we’d achieve the outcome we predicted on paper until we saw it happen in the lab,” said study author Scott Keene.
On the first try, however, the team found that the burst of chemical signaling was able to change the artificial neuron’s conductance long-term, similar to the neuroscience dogma “neurons that fire together, wire together.” Activating the upstream biological neuron with chemicals also changed the artificial neuron’s conductance in a way that mimicked learning.
“That’s when we realized the potential this has for emulating the long-term learning process of a synapse,” said Keene.
Visualizing under an electron microscope, the team found that, similar to its biological counterpart, the hybrid synapse was able to efficiently recycle dopamine with timescales similar to the brain after some calibration. By playing with how much dopamine accumulates at the artificial neuron, the team found that they loosely mimic a learning rule called spike learning—a darling of machine learning inspired by the brain’s computation.
A Hybrid Future?
Unfortunately for cyborg enthusiasts, the work is still in its infancy.
For one, the artificial neurons are still rather bulky compared to biological ones. This means that they can’t capture and translate information from a single “boat” of dopamine. It’s also unclear if, and how, a hybrid synapse can work inside a living brain. Given the billions of synapses firing away in our heads, it’ll be a challenge to find-and-replace those that need replacement, and be able to control our memories and behaviors similar to natural ones.
That said, we’re inching ever closer to full-capability artificial-biological hybrid circuits.
“The neurotransmitter-mediated neuromorphic device presented in this work constitutes a fundamental building block for artificial neural networks that can be directly modulated based on biological feedback from live neurons,” the authors concluded. “[It] is a crucial first step in realizing next-generation adaptive biohybrid interfaces.”
Image Credit: Gerd Altmann from Pixabay Continue reading