Tag Archives: tests

#432568 Tech Optimists See a Golden ...

Technology evangelists dream about a future where we’re all liberated from the more mundane aspects of our jobs by artificial intelligence. Other futurists go further, imagining AI will enable us to become superhuman, enhancing our intelligence, abandoning our mortal bodies, and uploading ourselves to the cloud.

Paradise is all very well, although your mileage may vary on whether these scenarios are realistic or desirable. The real question is, how do we get there?

Economist John Maynard Keynes notably argued in favor of active intervention when an economic crisis hits, rather than waiting for the markets to settle down to a more healthy equilibrium in the long run. His rebuttal to critics was, “In the long run, we are all dead.” After all, if it takes 50 years of upheaval and economic chaos for things to return to normality, there has been an immense amount of human suffering first.

Similar problems arise with the transition to a world where AI is intimately involved in our lives. In the long term, automation of labor might benefit the human species immensely. But in the short term, it has all kinds of potential pitfalls, especially in exacerbating inequality within societies where AI takes on a larger role. A new report from the Institute for Public Policy Research has deep concerns about the future of work.

Uneven Distribution
While the report doesn’t foresee the same gloom and doom of mass unemployment that other commentators have considered, the concern is that the gains in productivity and economic benefits from AI will be unevenly distributed. In the UK, jobs that account for £290 billion worth of wages in today’s economy could potentially be automated with current technology. But these are disproportionately jobs held by people who are already suffering from social inequality.

Low-wage jobs are five times more likely to be automated than high-wage jobs. A greater proportion of jobs held by women are likely to be automated. The solution that’s often suggested is that people should simply “retrain”; but if no funding or assistance is provided, this burden is too much to bear. You can’t expect people to seamlessly transition from driving taxis to writing self-driving car software without help. As we have already seen, inequality is exacerbated when jobs that don’t require advanced education (even if they require a great deal of technical skill) are the first to go.

No Room for Beginners
Optimists say algorithms won’t replace humans, but will instead liberate us from the dull parts of our jobs. Lawyers used to have to spend hours trawling through case law to find legal precedents; now AI can identify the most relevant documents for them. Doctors no longer need to look through endless scans and perform diagnostic tests; machines can do this, leaving the decision-making to humans. This boosts productivity and provides invaluable tools for workers.

But there are issues with this rosy picture. If humans need to do less work, the economic incentive is for the boss to reduce their hours. Some of these “dull, routine” parts of the job were traditionally how people getting into the field learned the ropes: paralegals used to look through case law, but AI may render them obsolete. Even in the field of journalism, there’s now software that will rewrite press releases for publication, traditionally something close to an entry-level task. If there are no entry-level jobs, or if entry-level now requires years of training, the result is to exacerbate inequality and reduce social mobility.

Automating Our Biases
The adoption of algorithms into employment has already had negative impacts on equality. Cathy O’Neil, mathematics PhD from Harvard, raises these concerns in her excellent book Weapons of Math Destruction. She notes that algorithms designed by humans often encode the biases of that society, whether they’re racial or based on gender and sexuality.

Google’s search engine advertises more executive-level jobs to users it thinks are male. AI programs predict that black offenders are more likely to re-offend than white offenders; they receive correspondingly longer sentences. It needn’t necessarily be that bias has been actively programmed; perhaps the algorithms just learn from historical data, but this means they will perpetuate historical inequalities.

Take candidate-screening software HireVue, used by many major corporations to assess new employees. It analyzes “verbal and non-verbal cues” of candidates, comparing them to employees that historically did well. Either way, according to Cathy O’Neil, they are “using people’s fear and trust of mathematics to prevent them from asking questions.” With no transparency or understanding of how the algorithm generates its results, and no consensus over who’s responsible for the results, discrimination can occur automatically, on a massive scale.

Combine this with other demographic trends. In rich countries, people are living longer. An increasing burden will be placed on a shrinking tax base to support that elderly population. A recent study said that due to the accumulation of wealth in older generations, millennials stand to inherit more than any previous generation, but it won’t happen until they’re in their 60s. Meanwhile, those with savings and capital will benefit as the economy shifts: the stock market and GDP will grow, but wages and equality will fall, a situation that favors people who are already wealthy.

Even in the most dramatic AI scenarios, inequality is exacerbated. If someone develops a general intelligence that’s near-human or super-human, and they manage to control and monopolize it, they instantly become immensely wealthy and powerful. If the glorious technological future that Silicon Valley enthusiasts dream about is only going to serve to make the growing gaps wider and strengthen existing unfair power structures, is it something worth striving for?

What Makes a Utopia?
We urgently need to redefine our notion of progress. Philosophers worry about an AI that is misaligned—the things it seeks to maximize are not the things we want maximized. At the same time, we measure the development of our countries by GDP, not the quality of life of workers or the equality of opportunity in the society. Growing wealth with increased inequality is not progress.

Some people will take the position that there are always winners and losers in society, and that any attempt to redress the inequalities of our society will stifle economic growth and leave everyone worse off. Some will see this as an argument for a new economic model, based around universal basic income. Any moves towards this will need to take care that it’s affordable, sustainable, and doesn’t lead towards an entrenched two-tier society.

Walter Schiedel’s book The Great Leveller is a huge survey of inequality across all of human history, from the 21st century to prehistoric cave-dwellers. He argues that only revolutions, wars, and other catastrophes have historically reduced inequality: a perfect example is the Black Death in Europe, which (by reducing the population and therefore the labor supply that was available) increased wages and reduced inequality. Meanwhile, our solution to the financial crisis of 2007-8 may have only made the problem worse.

But in a world of nuclear weapons, of biowarfare, of cyberwarfare—a world of unprecedented, complex, distributed threats—the consequences of these “safety valves” could be worse than ever before. Inequality increases the risk of global catastrophe, and global catastrophes could scupper any progress towards the techno-utopia that the utopians dream of. And a society with entrenched inequality is no utopia at all.

Image Credit: OliveTree / Shutterstock.com Continue reading

Posted in Human Robots

#432549 Your Next Pilot Could Be Drone Software

Would you get on a plane that didn’t have a human pilot in the cockpit? Half of air travelers surveyed in 2017 said they would not, even if the ticket was cheaper. Modern pilots do such a good job that almost any air accident is big news, such as the Southwest engine disintegration on April 17.

But stories of pilot drunkenness, rants, fights and distraction, however rare, are reminders that pilots are only human. Not every plane can be flown by a disaster-averting pilot, like Southwest Capt. Tammie Jo Shults or Capt. Chesley “Sully” Sullenberger. But software could change that, equipping every plane with an extremely experienced guidance system that is always learning more.

In fact, on many flights, autopilot systems already control the plane for basically all of the flight. And software handles the most harrowing landings—when there is no visibility and the pilot can’t see anything to even know where he or she is. But human pilots are still on hand as backups.

A new generation of software pilots, developed for self-flying vehicles, or drones, will soon have logged more flying hours than all humans have—ever. By combining their enormous amounts of flight data and experience, drone-control software applications are poised to quickly become the world’s most experienced pilots.

Drones That Fly Themselves
Drones come in many forms, from tiny quad-rotor copter toys to missile-firing winged planes, or even 7-ton aircraft that can stay aloft for 34 hours at a stretch.

When drones were first introduced, they were flown remotely by human operators. However, this merely substitutes a pilot on the ground for one aloft. And it requires significant communications bandwidth between the drone and control center, to carry real-time video from the drone and to transmit the operator’s commands.

Many newer drones no longer need pilots; some drones for hobbyists and photographers can now fly themselves along human-defined routes, leaving the human free to sightsee—or control the camera to get the best view.

University researchers, businesses, and military agencies are now testing larger and more capable drones that will operate autonomously. Swarms of drones can fly without needing tens or hundreds of humans to control them. And they can perform coordinated maneuvers that human controllers could never handle.

Could humans control these 1,218 drones all together?

Whether flying in swarms or alone, the software that controls these drones is rapidly gaining flight experience.

Importance of Pilot Experience
Experience is the main qualification for pilots. Even a person who wants to fly a small plane for personal and noncommercial use needs 40 hours of flying instruction before getting a private pilot’s license. Commercial airline pilots must have at least 1,000 hours before even serving as a co-pilot.

On-the-ground training and in-flight experience prepare pilots for unusual and emergency scenarios, ideally to help save lives in situations like the “Miracle on the Hudson.” But many pilots are less experienced than “Sully” Sullenberger, who saved his planeload of people with quick and creative thinking. With software, though, every plane can have on board a pilot with as much experience—if not more. A popular software pilot system, in use in many aircraft at once, could gain more flight time each day than a single human might accumulate in a year.

As someone who studies technology policy as well as the use of artificial intelligence for drones, cars, robots, and other uses, I don’t lightly suggest handing over the controls for those additional tasks. But giving software pilots more control would maximize computers’ advantages over humans in training, testing, and reliability.

Training and Testing Software Pilots
Unlike people, computers will follow sets of instructions in software the same way every time. That lets developers create instructions, test reactions, and refine aircraft responses. Testing could make it far less likely, for example, that a computer would mistake the planet Venus for an oncoming jet and throw the plane into a steep dive to avoid it.

The most significant advantage is scale: Rather than teaching thousands of individual pilots new skills, updating thousands of aircraft would require only downloading updated software.

These systems would also need to be thoroughly tested—in both real-life situations and in simulations—to handle a wide range of aviation situations and to withstand cyberattacks. But once they’re working well, software pilots are not susceptible to distraction, disorientation, fatigue, or other human impairments that can create problems or cause errors even in common situations.

Rapid Response and Adaptation
Already, aircraft regulators are concerned that human pilots are forgetting how to fly on their own and may have trouble taking over from an autopilot in an emergency.

In the “Miracle on the Hudson” event, for example, a key factor in what happened was how long it took for the human pilots to figure out what had happened—that the plane had flown through a flock of birds, which had damaged both engines—and how to respond. Rather than the approximately one minute it took the humans, a computer could have assessed the situation in seconds, potentially saving enough time that the plane could have landed on a runway instead of a river.

Aircraft damage can pose another particularly difficult challenge for human pilots: It can change what effects the controls have on its flight. In cases where damage renders a plane uncontrollable, the result is often tragedy. A sufficiently advanced automated system could make minute changes to the aircraft’s steering and use its sensors to quickly evaluate the effects of those movements—essentially learning how to fly all over again with a damaged plane.

Boosting Public Confidence
The biggest barrier to fully automated flight is psychological, not technical. Many people may not want to trust their lives to computer systems. But they might come around when reassured that the software pilot has tens, hundreds, or thousands more hours of flight experience than any human pilot.

Other autonomous technologies, too, are progressing despite public concerns. Regulators and lawmakers are allowing self-driving cars on the roads in many states. But more than half of Americans don’t want to ride in one, largely because they don’t trust the technology. And only 17 percent of travelers around the world are willing to board a plane without a pilot. However, as more people experience self-driving cars on the road and have drones deliver them packages, it is likely that software pilots will gain in acceptance.

The airline industry will certainly be pushing people to trust the new systems: Automating pilots could save tens of billions of dollars a year. And the current pilot shortage means software pilots may be the key to having any airline service to smaller destinations.

Both Boeing and Airbus have made significant investments in automated flight technology, which would remove or reduce the need for human pilots. Boeing has actually bought a drone manufacturer and is looking to add software pilot capabilities to the next generation of its passenger aircraft. (Other tests have tried to retrofit existing aircraft with robotic pilots.)

One way to help regular passengers become comfortable with software pilots—while also helping to both train and test the systems—could be to introduce them as co-pilots working alongside human pilots. Planes would be operated by software from gate to gate, with the pilots instructed to touch the controls only if the system fails. Eventually pilots could be removed from the aircraft altogether, just like they eventually were from the driverless trains that we routinely ride in airports around the world.

This article was originally published on The Conversation. Read the original article.

Image Credit: Skycolors / Shutterstock.com Continue reading

Posted in Human Robots

#431920 If We Could Engineer Animals to Be as ...

Advances in neural implants and genetic engineering suggest that in the not–too–distant future we may be able to boost human intelligence. If that’s true, could we—and should we—bring our animal cousins along for the ride?
Human brain augmentation made headlines last year after several tech firms announced ambitious efforts to build neural implant technology. Duke University neuroscientist Mikhail Lebedev told me in July it could be decades before these devices have applications beyond the strictly medical.
But he said the technology, as well as other pharmacological and genetic engineering approaches, will almost certainly allow us to boost our mental capacities at some point in the next few decades.
Whether this kind of cognitive enhancement is a good idea or not, and how we should regulate it, are matters of heated debate among philosophers, futurists, and bioethicists, but for some it has raised the question of whether we could do the same for animals.
There’s already tantalizing evidence of the idea’s feasibility. As detailed in BBC Future, a group from MIT found that mice that were genetically engineered to express the human FOXP2 gene linked to learning and speech processing picked up maze routes faster. Another group at Wake Forest University studying Alzheimer’s found that neural implants could boost rhesus monkeys’ scores on intelligence tests.
The concept of “animal uplift” is most famously depicted in the Planet of the Apes movie series, whose planet–conquering protagonists are likely to put most people off the idea. But proponents are less pessimistic about the outcomes.
Science fiction author David Brin popularized the concept in his “Uplift” series of novels, in which humans share the world with various other intelligent animals that all bring their own unique skills, perspectives, and innovations to the table. “The benefits, after a few hundred years, could be amazing,” he told Scientific American.
Others, like George Dvorsky, the director of the Rights of Non-Human Persons program at the Institute for Ethics and Emerging Technologies, go further and claim there is a moral imperative. He told the Boston Globe that denying augmentation technology to animals would be just as unethical as excluding certain groups of humans.
Others are less convinced. Forbes’ Alex Knapp points out that developing the technology to uplift animals will likely require lots of very invasive animal research that will cause huge suffering to the animals it purports to help. This is problematic enough with normal animals, but could be even more morally dubious when applied to ones whose cognitive capacities have been enhanced.
The whole concept could also be based on a fundamental misunderstanding of the nature of intelligence. Humans are prone to seeing intelligence as a single, self-contained metric that progresses in a linear way with humans at the pinnacle.
In an opinion piece in Wired arguing against the likelihood of superhuman artificial intelligence, Kevin Kelly points out that science has no such single dimension with which to rank the intelligence of different species. Each one combines a bundle of cognitive capabilities, some of which are well below our own capabilities and others which are superhuman. He uses the example of the squirrel, which can remember the precise location of thousands of acorns for years.
Uplift efforts may end up being less about boosting intelligence and more about making animals more human-like. That represents “a kind of benevolent colonialism” that assumes being more human-like is a good thing, Paul Graham Raven, a futures researcher at the University of Sheffield in the United Kingdom, told the Boston Globe. There’s scant evidence that’s the case, and it’s easy to see how a chimpanzee with the mind of a human might struggle to adjust.
There are also fundamental barriers that may make it difficult to achieve human-level cognitive capabilities in animals, no matter how advanced brain augmentation technology gets. In 2013 Swedish researchers selectively bred small fish called guppies for bigger brains. This made them smarter, but growing the energy-intensive organ meant the guppies developed smaller guts and produced fewer offspring to compensate.
This highlights the fact that uplifting animals may require more than just changes to their brains, possibly a complete rewiring of their physiology that could prove far more technically challenging than human brain augmentation.
Our intelligence is intimately tied to our evolutionary history—our brains are bigger than other animals’; opposable thumbs allow us to use tools; our vocal chords make complex communication possible. No matter how much you augment a cow’s brain, it still couldn’t use a screwdriver or talk to you in English because it simply doesn’t have the machinery.
Finally, from a purely selfish point of view, even if it does become possible to create a level playing field between us and other animals, it may not be a smart move for humanity. There’s no reason to assume animals would be any more benevolent than we are, having evolved in the same ‘survival of the fittest’ crucible that we have. And given our already endless capacity to divide ourselves along national, religious, or ethnic lines, conflict between species seems inevitable.
We’re already likely to face considerable competition from smart machines in the coming decades if you believe the hype around AI. So maybe adding a few more intelligent species to the mix isn’t the best idea.
Image Credit: Ron Meijer / Shutterstock.com Continue reading

Posted in Human Robots

#431828 This Self-Driving AI Is Learning to ...

I don’t have to open the doors of AImotive’s white 2015 Prius to see that it’s not your average car. This particular Prius has been christened El Capitan, the name written below the rear doors, and two small cameras are mounted on top of the car. Bundles of wire snake out from them, as well as from the two additional cameras on the car’s hood and trunk.
Inside is where things really get interesting, though. The trunk holds a computer the size of a microwave, and a large monitor covers the passenger glove compartment and dashboard. The center console has three switches labeled “Allowed,” “Error,” and “Active.”
Budapest-based AImotive is working to provide scalable self-driving technology alongside big players like Waymo and Uber in the autonomous vehicle world. On a highway test ride with CEO Laszlo Kishonti near the company’s office in Mountain View, California, I got a glimpse of just how complex that world is.
Camera-Based Feedback System
AImotive’s approach to autonomous driving is a little different from that of some of the best-known systems. For starters, they’re using cameras, not lidar, as primary sensors. “The traffic system is visual and the cost of cameras is low,” Kishonti said. “A lidar can recognize when there are people near the car, but a camera can differentiate between, say, an elderly person and a child. Lidar’s resolution isn’t high enough to recognize the subtle differences of urban driving.”
Image Credit: AImotive
The company’s aiDrive software uses data from the camera sensors to feed information to its algorithms for hierarchical decision-making, grouped under four concurrent activities: recognition, location, motion, and control.
Kishonti pointed out that lidar has already gotten more cost-efficient, and will only continue to do so.
“Ten years ago, lidar was best because there wasn’t enough processing power to do all the calculations by AI. But the cost of running AI is decreasing,” he said. “In our approach, computer vision and AI processing are key, and for safety, we’ll have fallback sensors like radar or lidar.”
aiDrive currently runs on Nvidia chips, which Kishonti noted were originally designed for graphics, and are not terribly efficient given how power-hungry they are. “We’re planning to substitute lower-cost, lower-energy chips in the next six months,” he said.
Testing in Virtual Reality
Waymo recently announced its fleet has now driven four million miles autonomously. That’s a lot of miles, and hard to compete with. But AImotive isn’t trying to compete, at least not by logging more real-life test miles. Instead, the company is doing 90 percent of its testing in virtual reality. “This is what truly differentiates us from competitors,” Kishonti said.
He outlined the three main benefits of VR testing: it can simulate scenarios too dangerous for the real world (such as hitting something), too costly (not every company has Waymo’s funds to run hundreds of cars on real roads), or too time-consuming (like waiting for rain, snow, or other weather conditions to occur naturally and repeatedly).
“Real-world traffic testing is very skewed towards the boring miles,” he said. “What we want to do is test all the cases that are hard to solve.”
On a screen that looked not unlike multiple games of Mario Kart, he showed me the simulator. Cartoon cars cruised down winding streets, outfitted with all the real-world surroundings: people, trees, signs, other cars. As I watched, a furry kangaroo suddenly hopped across one screen. “Volvo had an issue in Australia,” Kishonti explained. “A kangaroo’s movement is different than other animals since it hops instead of running.” Talk about cases that are hard to solve.
AImotive is currently testing around 1,000 simulated scenarios every night, with a steadily-rising curve of successful tests. These scenarios are broken down into features, and the car’s behavior around those features fed into a neural network. As the algorithms learn more features, the level of complexity the vehicles can handle goes up.
On the Road
After Kishonti and his colleagues filled me in on the details of their product, it was time to test it out. A safety driver sat in the driver’s seat, a computer operator in the passenger seat, and Kishonti and I in back. The driver maintained full control of the car until we merged onto the highway. Then he flicked the “Allowed” switch, his copilot pressed the “Active” switch, and he took his hands off the wheel.
What happened next, you ask?
A few things. El Capitan was going exactly the speed limit—65 miles per hour—which meant all the other cars were passing us. When a car merged in front of us or cut us off, El Cap braked accordingly (if a little abruptly). The monitor displayed the feed from each of the car’s cameras, plus multiple data fields and a simulation where a blue line marked the center of the lane, measured by the cameras tracking the lane markings on either side.
I noticed El Cap wobbling out of our lane a bit, but it wasn’t until two things happened in a row that I felt a little nervous: first we went under a bridge, then a truck pulled up next to us, both bridge and truck casting a complete shadow over our car. At that point El Cap lost it, and we swerved haphazardly to the right, narrowly missing the truck’s rear wheels. The safety driver grabbed the steering wheel and took back control of the car.
What happened, Kishonti explained, was that the shadows made it hard for the car’s cameras to see the lane markings. This was a new scenario the algorithm hadn’t previously encountered. If we’d only gone under a bridge or only been next to the truck for a second, El Cap may not have had so much trouble, but the two events happening in a row really threw the car for a loop—almost literally.
“This is a new scenario we’ll add to our testing,” Kishonti said. He added that another way for the algorithm to handle this type of scenario, rather than basing its speed and positioning on the lane markings, is to mimic nearby cars. “The human eye would see that other cars are still moving at the same speed, even if it can’t see details of the road,” he said.
After another brief—and thankfully uneventful—hands-off cruise down the highway, the safety driver took over, exited the highway, and drove us back to the office.
Driving into the Future
I climbed out of the car feeling amazed not only that self-driving cars are possible, but that driving is possible at all. I squint when driving into a tunnel, swerve to avoid hitting a stray squirrel, and brake gradually at stop signs—all without consciously thinking to do so. On top of learning to steer, brake, and accelerate, self-driving software has to incorporate our brains’ and bodies’ unconscious (but crucial) reactions, like our pupils dilating to let in more light so we can see in a tunnel.
Despite all the progress of machine learning, artificial intelligence, and computing power, I have a wholly renewed appreciation for the thing that’s been in charge of driving up till now: the human brain.
Kishonti seemed to feel similarly. “I don’t think autonomous vehicles in the near future will be better than the best drivers,” he said. “But they’ll be better than the average driver. What we want to achieve is safe, good-quality driving for everyone, with scalability.”
AImotive is currently working with American tech firms and with car and truck manufacturers in Europe, China, and Japan.
Image Credit: Alex Oakenman / Shutterstock.com Continue reading

Posted in Human Robots

#431553 This Week’s Awesome Stories From ...

ROBOTS
Boston Dynamics’ Atlas Robot Does Backflips Now and It’s Full-Tilt InsaneMatt Simon | Wired “To be clear: Humanoids aren’t supposed to be able to do this. It’s extremely difficult to make a bipedal robot that can move effectively, much less kick off a tumbling routine.”

TRANSPORTATION
This Is the Tesla Semi TruckZac Estrada | The Verge“What Tesla has done today is shown that it wants to invigorate a segment, rather than just make something to comply with more stringent emissions regulations… And in the process, it’s trying to do for heavy-duty commercial vehicles what it did for luxury cars—plough forward in its own lane.”
PRIVACY AND SECURITY
Should Facebook Notify Readers When They’ve Been Fed Disinformation?Austin Carr | Fast Company “It would be, Reed suggested, the social network equivalent of a newspaper correction—only one that, with the tech companies’ expansive data, could actually reach its intended audience, like, say, the 250,000-plus Facebook users who shared the debunked YourNewsWire.com story.”
BRAIN HEALTH
Brain Implant Boosts Memory for First Time EverKristin Houser | NBC News “Once implanted in the volunteers, Song’s device could collect data on their brain activity during tests designed to stimulate either short-term memory or working memory. The researchers then determined the pattern associated with optimal memory performance and used the device’s electrodes to stimulate the brain following that pattern during later tests.”
COMPUTING
Yale Professors Race Google and IBM to the First Quantum ComputerCade Metz | New York Times “Though Quantum Circuits is using the same quantum method as its bigger competitors, Mr. Schoelkopf argued that his company has an edge because it is tackling the problem differently. Rather than building one large quantum machine, it is constructing a series of tiny machines that can be networked together. He said this will make it easier to correct errors in quantum calculations—one of the main difficulties in building one of these complex machines.”
Image Credit: Tesla Motors Continue reading

Posted in Human Robots