Tag Archives: test
#433689 The Rise of Dataism: A Threat to Freedom ...
What would happen if we made all of our data public—everything from wearables monitoring our biometrics, all the way to smartphones monitoring our location, our social media activity, and even our internet search history?
Would such insights into our lives simply provide companies and politicians with greater power to invade our privacy and manipulate us by using our psychological profiles against us?
A burgeoning new philosophy called dataism doesn’t think so.
In fact, this trending ideology believes that liberating the flow of data is the supreme value of the universe, and that it could be the key to unleashing the greatest scientific revolution in the history of humanity.
What Is Dataism?
First mentioned by David Brooks in his 2013 New York Times article “The Philosophy of Data,” dataism is an ethical system that has been most heavily explored and popularized by renowned historian, Yuval Noah Harari.
In his 2016 book Homo Deus, Harari described dataism as a new form of religion that celebrates the growing importance of big data.
Its core belief centers around the idea that the universe gives greater value and support to systems, individuals, and societies that contribute most heavily and efficiently to data processing. In an interview with Wired, Harari stated, “Humans were special and important because up until now they were the most sophisticated data processing system in the universe, but this is no longer the case.”
Now, big data and machine learning are proving themselves more sophisticated, and dataists believe we should hand over as much information and power to these algorithms as possible, allowing the free flow of data to unlock innovation and progress unlike anything we’ve ever seen before.
Pros: Progress and Personal Growth
When you let data run freely, it’s bound to be mixed and matched in new ways that inevitably spark progress. And as we enter the exponential future where every person is constantly connected and sharing their data, the potential for such collaborative epiphanies becomes even greater.
We can already see important increases in quality of life thanks to companies like Google. With Google Maps on your phone, your position is constantly updating on their servers. This information, combined with everyone else on the planet using a phone with Google Maps, allows your phone to inform you of traffic conditions. Based on the speed and location of nearby phones, Google can reroute you to less congested areas or help you avoid accidents. And since you trust that these algorithms have more data than you, you gladly hand over your power to them, following your GPS’s directions rather than your own.
We can do the same sort of thing with our bodies.
Imagine, for instance, a world where each person has biosensors in their bloodstreams—a not unlikely or distant possibility when considering diabetic people already wear insulin pumps that constantly monitor their blood sugar levels. And let’s assume this data was freely shared to the world.
Now imagine a virus like Zika or the Bird Flu breaks out. Thanks to this technology, the odd change in biodata coming from a particular region flags an artificial intelligence that feeds data to the CDC (Center for Disease Control and Prevention). Recognizing that a pandemic could be possible, AIs begin 3D printing vaccines on-demand, predicting the number of people who may be afflicted. When our personal AIs tell us the locations of the spreading epidemic and to take the vaccine it just delivered by drone to our homes, are we likely to follow its instructions? Almost certainly—and if so, it’s likely millions, if not billions, of lives will have been saved.
But to quickly create such vaccines, we’ll also need to liberate research.
Currently, universities and companies seeking to benefit humankind with medical solutions have to pay extensively to organize clinical trials and to find people who match their needs. But if all our biodata was freely aggregated, perhaps they could simply say “monitor all people living with cancer” to an AI, and thanks to the constant stream of data coming in from the world’s population, a machine learning program may easily be able to detect a pattern and create a cure.
As always in research, the more sample data you have, the higher the chance that such patterns will emerge. If data is flowing freely, then anyone in the world can suddenly decide they have a hunch they want to explore, and without having to spend months and months of time and money hunting down the data, they can simply test their hypothesis.
Whether garage tinkerers, at-home scientists, or PhD students—an abundance of free data allows for science to progress unhindered, each person able to operate without being slowed by lack of data. And any progress they make is immediately liberated, becoming free data shared with anyone else that may find a use for it.
Any individual with a curious passion would have the entire world’s data at their fingertips, empowering every one of us to become an expert in any subject that inspires us. Expertise we can then share back into the data stream—a positive feedback loop spearheading progress for the entirety of humanity’s knowledge.
Such exponential gains represent a dataism utopia.
Unfortunately, our current incentives and economy also show us the tragic failures of this model.
As Harari has pointed out, the rise of datism means that “humanism is now facing an existential challenge and the idea of ‘free will’ is under threat.”
Cons: Manipulation and Extortion
In 2017, The Economist declared that data was the most valuable resource on the planet—even more valuable than oil.
Perhaps this is because data is ‘priceless’: it represents understanding, and understanding represents control. And so, in the world of advertising and politics, having data on your consumers and voters gives you an incredible advantage.
This was evidenced by the Cambridge Analytica scandal, in which it’s believed that Donald Trump and the architects of Brexit leveraged users’ Facebook data to create psychological profiles that enabled them to manipulate the masses.
How powerful are these psychological models?
A team who built a model similar to that used by Cambridge Analytica said their model could understand someone as well as a coworker with access to only 10 Facebook likes. With 70 likes they could know them as well as a friend might, 150 likes to match their parents’ understanding, and at 300 likes they could even come to know someone better than their lovers. With more likes, they could even come to know someone better than that person knows themselves.
Proceeding With Caution
In a capitalist democracy, do we want businesses and politicians to know us better than we know ourselves?
In spite of the remarkable benefits that may result for our species by freely giving away our information, do we run the risk of that data being used to exploit and manipulate the masses towards a future without free will, where our daily lives are puppeteered by those who own our data?
It’s extremely possible.
And it’s for this reason that one of the most important conversations we’ll have as a species centers around data ownership: do we just give ownership of the data back to the users, allowing them to choose who to sell or freely give their data to? Or will that simply deter the entrepreneurial drive and cause all of the free services we use today, like Google Search and Facebook, to begin charging inaccessible prices? How much are we willing to pay for our freedom? And how much do we actually care?
If recent history has taught us anything, it’s that humans are willing to give up more privacy than they like to think. Fifteen years ago, it would have been crazy to suggest we’d all allow ourselves to be tracked by our cars, phones, and daily check-ins to our favorite neighborhood locations; but now most of us see it as a worthwhile trade for optimized commutes and dating. As we continue navigating that fine line between exploitation and innovation into a more technological future, what other trade-offs might we be willing to make?
Image Credit: graphicINmotion / Shutterstock.com Continue reading
#433474 How to Feed Global Demand for ...
“You really can’t justify tuna in Chicago as a source of sustenance.” That’s according to Dr. Sylvia Earle, a National Geographic Society Explorer who was the first female chief scientist at NOAA. She came to the Good Food Institute’s Good Food Conference to deliver a call to action around global food security, agriculture, environmental protection, and the future of consumer choice.
It seems like all options should be on the table to feed an exploding population threatened by climate change. But Dr. Earle, who is faculty at Singularity University, drew a sharp distinction between seafood for sustenance versus seafood as a choice. “There is this widespread claim that we must take large numbers of wildlife from the sea in order to have food security.”
A few minutes later, Dr. Earle directly addressed those of us in the audience. “We know the value of a dead fish,” she said. That’s market price. “But what is the value of a live fish in the ocean?”
That’s when my mind blew open. What is the value—or put another way, the cost—of using the ocean as a major source of protein for humans? How do you put a number on that? Are we talking about dollars and cents, or about something far larger?
Dr. Liz Specht of the Good Food Institute drew the audience’s attention to a strange imbalance. Currently, about half of the yearly global catch of seafood comes from aquaculture. That means that the other half is wild caught. It’s hard to imagine half of your meat coming directly from the forests and the plains, isn’t it? And yet half of the world’s seafood comes from direct harvesting of the oceans, by way of massive overfishing, a terrible toll from bycatch, a widespread lack of regulation and enforcement, and even human rights violations such as slavery.
The search for solutions is on, from both within the fishing industry and from external agencies such as governments and philanthropists. Could there be another way?
Makers of plant-based seafood and clean seafood think they know how to feed the global demand for seafood without harming the ocean. These companies are part of a larger movement harnessing technology to reduce our reliance on wild and domesticated animals—and all the environmental, economic, and ethical issues that come with it.
Producers of plant-based seafood (20 or so currently) are working to capture the taste, texture, and nutrition of conventional seafood without the limitations of geography or the health of a local marine population. Like with plant-based meat, makers of plant-based seafood are harnessing food science and advances in chemistry, biology, and engineering to make great food. The industry’s strategy? Start with what the consumer wants, and then figure out how to achieve that great taste through technology.
So how does plant-based seafood taste? Pretty good, as it turns out. (The biggest benefit of a food-oriented conference is that your mouth is always full!)
I sampled “tuna” salad made from Good Catch Food’s fish-free tuna, which is sourced from legumes; the texture was nearly indistinguishable from that of flaked albacore tuna, and there was no lingering fishy taste to overpower my next bite. In a blind taste test, I probably wouldn’t have known that I was eating a plant-based seafood alternative. Next I reached for Ocean Hugger Food’s Ahimi, a tomato-based alternative to raw tuna. I adore Hawaiian poke, so I was pleasantly surprised when my Ahimi-based poke captured the bite of ahi tuna. It wasn’t quite as delightfully fatty as raw tuna, but with wild tuna populations struggling to recover from a 97% decline in numbers from 40 years ago, Ahimi is a giant stride in the right direction.
These plant-based alternatives aren’t the only game in town, however.
The clean meat industry, which has also been called “cultured meat” or “cellular agriculture,” isn’t seeking to lure consumers away from animal protein. Instead, cells are sampled from live animals and grown in bioreactors—meaning that no animal is slaughtered to produce real meat.
Clean seafood is poised to piggyback off platforms developed for clean meat; growing fish cells in the lab should rely on the same processes as growing meat cells. I know of four companies currently focusing on seafood (Finless Foods, Wild Type, BlueNalu, and Seafuture Sustainable Biotech), and a few more are likely to emerge from stealth mode soon.
Importantly, there’s likely not much difference between growing clean seafood from the top or the bottom of the food chain. Tuna, for example, are top predators that must grow for at least 10 years before they’re suitable as food. Each year, a tuna consumes thousands of pounds of other fish, shellfish, and plankton. That “long tail of groceries,” said Dr. Earle, “is a pretty expensive choice.” Excitingly, clean tuna would “level the trophic playing field,” as Dr. Specht pointed out.
All this is only the beginning of what might be possible.
Combining synthetic biology with clean meat and seafood means that future products could be personalized for individual taste preferences or health needs, by reprogramming the DNA of the cells in the lab. Industries such as bioremediation and biofuels likely have a lot to teach us about sourcing new ingredients and flavors from algae and marine plants. By harnessing rapid advances in automation, robotics, sensors, machine vision, and other big-data analytics, the manufacturing and supply chains for clean seafood could be remarkably safe and robust. Clean seafood would be just that: clean, without pathogens, parasites, or the plastic threatening to fill our oceans, meaning that you could enjoy it raw.
What about price? Dr. Mark Post, a pioneer in clean meat who is also faculty at Singularity University, estimated that 80% of clean-meat production costs come from the expensive medium in which cells are grown—and some ingredients in the medium are themselves sourced from animals, which misses the point of clean meat. Plus, to grow a whole cut of food, like a fish fillet, the cells need to be coaxed into a complex 3D structure with various cell types like muscle cells and fat cells. These two technical challenges must be solved before clean meat and seafood give consumers the experience they want, at the price they want.
In this respect clean seafood has an unusual edge. Most of what we know about growing animal cells in the lab comes from the research and biomedical industries (from tissue engineering, for example)—but growing cells to replace an organ has different constraints than growing cells for food. The link between clean seafood and biomedicine is less direct, empowering innovators to throw out dogma and find novel reagents, protocols, and equipment to grow seafood that captures the tastes, textures, smells, and overall experience of dining by the ocean.
Asked to predict when we’ll be seeing clean seafood in the grocery store, Lou Cooperhouse the CEO of BlueNalu, explained that the challenges aren’t only in the lab: marketing, sales, distribution, and communication with consumers are all critical. As Niya Gupta, the founder of Fork & Goode, said, “The question isn’t ‘can we do it’, but ‘can we sell it’?”
The good news is that the clean meat and seafood industry is highly collaborative; there are at least two dozen companies in the space, and they’re all talking to each other. “This is an ecosystem,” said Dr. Uma Valeti, the co-founder of Memphis Meats. “We’re not competing with each other.” It will likely be at least a decade before science, business, and regulation enable clean meat and seafood to routinely appear on restaurant menus, let alone market shelves.
Until then, think carefully about your food choices. Meditate on Dr. Earle’s question: “What is the real cost of that piece of halibut?” Or chew on this from Dr. Ricardo San Martin, of the Sutardja Center at the University of California, Berkeley: “Food is a system of meanings, not an object.” What are you saying when you choose your food, about your priorities and your values and how you want the future to look? Do you think about animal welfare? Most ethical regulations don’t extend to marine life, and if you don’t think that ocean creatures feel pain, consider the lobster.
Seafood is largely an acquired taste, since most of us don’t live near the water. Imagine a future in which children grow up loving the taste of delicious seafood but without hurting a living animal, the ocean, or the global environment.
Do more than imagine. As Dr. Earle urged us, “Convince the public at large that this is a really cool idea.”
Widely available
Medium availability
Emerging
Gardein
Ahimi (Ocean Hugger)
New Wave Foods
Sophie’s Kitchen
Cedar Lake
To-funa Fish
Quorn
SoFine Foods
Seamore
Vegetarian Plus
Akua
Good Catch
Heritage
Hungry Planet
Odontella
Loma Linda
Heritage Health Food
Terramino Foods
The Vegetarian Butcher
May Wah
VBites
Table based on Figure 5 of the report “An Ocean of Opportunity: Plant-based and clean seafood for sustainable oceans without sacrifice,” from The Good Food Institute.
Image Credit: Tono Balaguer / Shutterstock.com Continue reading