Tag Archives: test

#436482 50+ Reasons Our Favorite Emerging ...

For most of history, technology was about atoms, the manipulation of physical stuff to extend humankind’s reach. But in the last five or six decades, atoms have partnered with bits, the elemental “particles” of the digital world as we know it today. As computing has advanced at the accelerating pace described by Moore’s Law, technological progress has become increasingly digitized.

SpaceX lands and reuses rockets and self-driving cars do away with drivers thanks to automation, sensors, and software. Businesses find and hire talent from anywhere in the world, and for better and worse, a notable fraction of the world learns and socializes online. From the sequencing of DNA to artificial intelligence and from 3D printing to robotics, more and more new technologies are moving at a digital pace and quickly emerging to reshape the world around us.

In 2019, stories charting the advances of some of these digital technologies consistently made headlines. Below is, what is at best, an incomplete list of some of the big stories that caught our eye this year. With so much happening, it’s likely we’ve missed some notable headlines and advances—as well as some of your personal favorites. In either instance, share your thoughts and candidates for the biggest stories and breakthroughs on Facebook and Twitter.

With that said, let’s dive straight into the year.

Artificial Intelligence
No technology garnered as much attention as AI in 2019. With good reason. Intelligent computer systems are transitioning from research labs to everyday life. Healthcare, weather forecasting, business process automation, traffic congestion—you name it, and machine learning algorithms are likely beginning to work on it. Yet, AI has also been hyped up and overmarketed, and the latest round of AI technology, deep learning, is likely only one piece of the AI puzzle.

This year, Open AI’s game-playing algorithms beat some of the world’s best Dota 2 players, DeepMind notched impressive wins in Starcraft, and Carnegie Mellon University’s Libratus “crushed” pros at six-player Texas Hold‘em.
Speaking of games, AI’s mastery of the incredibly complex game of Go prompted a former world champion to quit, stating that AI ‘”cannot be defeated.”
But it isn’t just fun and games. Practical, powerful applications that make the best of AI’s pattern recognition abilities are on the way. Insilico Medicine, for example, used machine learning to help discover and design a new drug in just 46 days, and DeepMind is focused on using AI to crack protein folding.
Of course, AI can be a double-edged sword. When it comes to deepfakes and fake news, for example, AI makes both easier to create and detect, and early in the year, OpenAI created and announced a powerful AI text generator but delayed releasing it for fear of malicious use.
Recognizing AI’s power for good and ill, the OECD, EU, World Economic Forum, and China all took a stab at defining an ethical framework for the development and deployment of AI.

Computing Systems
Processors and chips kickstarted the digital boom and are still the bedrock of continued growth. While progress in traditional silicon-based chips continues, it’s slowing and getting more expensive. Some say we’re reaching the end of Moore’s Law. While that may be the case for traditional chips, specialized chips and entirely new kinds of computing are waiting in the wings.

In fall 2019, Google confirmed its quantum computer had achieved “quantum supremacy,” a term that means a quantum computer can perform a calculation a normal computer cannot. IBM pushed back on the claim, and it should be noted the calculation was highly specialized. But while it’s still early days, there does appear to be some real progress (and more to come).
Should quantum computing become truly practical, “the implications are staggering.” It could impact machine learning, medicine, chemistry, and materials science, just to name a few areas.
Specialized chips continue to take aim at machine learning—a giant new chip with over a trillion transistors, for example, may make machine learning algorithms significantly more efficient.
Cellular computers also saw advances in 2019 thanks to CRISPR. And the year witnessed the emergence of the first reprogrammable DNA computer and new chips inspired by the brain.
The development of hardware computing platforms is intrinsically linked to software. 2019 saw a continued move from big technology companies towards open sourcing (at least parts of) their software, potentially democratizing the use of advanced systems.

Networks
Increasing interconnectedness has, in many ways, defined the 21st century so far. Your phone is no longer just a phone. It’s access to the world’s population and accumulated knowledge—and it fits in your pocket. Pretty neat. This is all thanks to networks, which had some notable advances in 2019.

The biggest network development of the year may well be the arrival of the first 5G networks.
5G’s faster speeds promise advances across many emerging technologies.
Self-driving vehicles, for example, may become both smarter and safer thanks to 5G C-V2X networks. (Don’t worry with trying to remember that. If they catch on, they’ll hopefully get a better name.)
Wi-Fi may have heard the news and said “hold my beer,” as 2019 saw the introduction of Wi-Fi 6. Perhaps the most important upgrade, among others, is that Wi-Fi 6 ensures that the ever-growing number of network connected devices get higher data rates.
Networks also went to space in 2019, as SpaceX began launching its Starlink constellation of broadband satellites. In typical fashion, Elon Musk showed off the network’s ability to bounce data around the world by sending a Tweet.

Augmented Reality and Virtual Reality
Forget Pokemon Go (unless you want to add me as a friend in the game—in which case don’t forget Pokemon Go). 2019 saw AR and VR advance, even as Magic Leap, the most hyped of the lot, struggled to live up to outsized expectations and sell headsets.

Mixed reality AR and VR technologies, along with the explosive growth of sensor-based data about the world around us, is creating a one-to-one “Mirror World” of our physical reality—a digital world you can overlay on our own or dive into immersively thanks to AR and VR.
Facebook launched Replica, for example, which is a photorealistic virtual twin of the real world that, among other things, will help train AIs to better navigate their physical surroundings.
Our other senses (beyond eyes) may also become part of the Mirror World through the use of peripherals like a newly developed synthetic skin that aim to bring a sense of touch to VR.
AR and VR equipment is also becoming cheaper—with more producers entering the space—and more user-friendly. Instead of a wired headset requiring an expensive gaming PC, the new Oculus Quest is a wireless, self-contained step toward the mainstream.
Niche uses also continue to gain traction, from Google Glass’s Enterprise edition to the growth of AR and VR in professional education—including on-the-job-training and roleplaying emotionally difficult work encounters, like firing an employee.

Digital Biology and Biotech
The digitization of biology is happening at an incredible rate. With wild new research coming to light every year and just about every tech giant pouring money into new solutions and startups, we’re likely to see amazing advances in 2020 added to those we saw in 2019.

None were, perhaps, more visible than the success of protein-rich, plant-based substitutes for various meats. This was the year Beyond Meat was the top IPO on the NASDAQ stock exchange and people stood in line for the plant-based Impossible Whopper and KFC’s Beyond Chicken.
In the healthcare space, a report about three people with HIV who became virus free thanks to a bone marrow transplants of stem cells caused a huge stir. The research is still in relatively early stages, and isn’t suitable for most people, but it does provides a glimmer of hope.
CRISPR technology, which almost deserves its own section, progressed by leaps and bounds. One tweak made CRISPR up to 50 times more accurate, while the latest new CRISPR-based system, CRISPR prime, was described as a “word processor” for gene editing.
Many areas of healthcare stand to gain from CRISPR. For instance, cancer treatment, were a first safety test showed ‘promising’ results.
CRISPR’s many potential uses, however, also include some weird/morally questionable areas, which was exemplified by one the year’s stranger CRISPR-related stories about a human-monkey hybrid embryo in China.
Incidentally, China could be poised to take the lead on CRISPR thanks to massive investments and research programs.
As a consequence of quick advances in gene editing, we are approaching a point where we will be able to design our own biology—but first we need to have a serious conversation as a society about the ethics of gene editing and what lines should be drawn.

3D Printing
3D printing has quietly been growing both market size and the objects the printers are capable of producing. While both are impressive, perhaps the biggest story of 2019 is their increased speed.

One example was a boat that was printed in just three days, which also set three new world records for 3D printing.
3D printing is also spreading in the construction industry. In Mexico, the technology is being used to construct 50 new homes with subsidized mortgages of just $20/month.
3D printers also took care of all parts of a 640 square-meter home in Dubai.
Generally speaking, the use of 3D printing to make parts for everything from rocket engines (even entire rockets) to trains to cars illustrates the sturdiness of the technology, anno 2019.
In healthcare, 3D printing is also advancing the cause of bio-printed organs and, in one example, was used to print vascularized parts of a human heart.

Robotics
Living in Japan, I get to see Pepper, Aibo, and other robots on pretty much a daily basis. The novelty of that experience is spreading to other countries, and robots are becoming a more visible addition to both our professional and private lives.

We can’t talk about robots and 2019 without mentioning Boston Dynamics’ Spot robot, which went on sale for the general public.
Meanwhile, Google, Boston Dynamics’ former owner, rebooted their robotics division with a more down-to-earth focus on everyday uses they hope to commercialize.
SoftBank’s Pepper robot is working as a concierge and receptionist in various countries. It is also being used as a home companion. Not satisfied, Pepper rounded off 2019 by heading to the gym—to coach runners.
Indeed, there’s a growing list of sports where robots perform as well—or better—than humans.
2019 also saw robots launch an assault on the kitchen, including the likes of Samsung’s robot chef, and invade the front yard, with iRobot’s Terra robotic lawnmower.
In the borderlands of robotics, full-body robotic exoskeletons got a bit more practical, as the (by all accounts) user-friendly, battery-powered Sarcos Robotics Guardian XO went commercial.

Autonomous Vehicles
Self-driving cars did not—if you will forgive the play on words—stay quite on track during 2019. The fallout from Uber’s 2018 fatal crash marred part of the year, while some big players ratcheted back expectations on a quick shift to the driverless future. Still, self-driving cars, trucks, and other autonomous systems did make progress this year.

Winner of my unofficial award for best name in self-driving goes to Optimus Ride. The company also illustrates that self-driving may not be about creating a one-size-fits-all solution but catering to specific markets.
Self-driving trucks had a good year, with tests across many countries and states. One of the year’s odder stories was a self-driving truck traversing the US with a delivery of butter.
A step above the competition may be the future slogan (or perhaps not) of Boeing’s self-piloted air taxi that saw its maiden test flight in 2019. It joins a growing list of companies looking to create autonomous, flying passenger vehicles.
2019 was also the year where companies seemed to go all in on last-mile autonomous vehicles. Who wins that particular competition could well emerge during 2020.

Blockchain and Digital Currencies
Bitcoin continues to be the cryptocurrency equivalent of a rollercoaster, but the underlying blockchain technology is progressing more steadily. Together, they may turn parts of our financial systems cashless and digital—though how and when remains a slightly open question.

One indication of this was Facebook’s hugely controversial announcement of Libra, its proposed cryptocurrency. The company faced immediate pushback and saw a host of partners jump ship. Still, it brought the tech into mainstream conversations as never before and is putting the pressure on governments and central banks to explore their own digital currencies.
Deloitte’s in-depth survey of the state of blockchain highlighted how the technology has moved from fintech into just about any industry you can think of.
One of the biggest issues facing the spread of many digital currencies—Bitcoin in particular, you could argue—is how much energy it consumes to mine them. 2019 saw the emergence of several new digital currencies with a much smaller energy footprint.
2019 was also a year where we saw a new kind of digital currency, stablecoins, rise to prominence. As the name indicates, stablecoins are a group of digital currencies whose price fluctuations are more stable than the likes of Bitcoin.
In a geopolitical sense, 2019 was a year of China playing catch-up. Having initially banned blockchain, the country turned 180 degrees and announced that it was “quite close” to releasing a digital currency and a wave of blockchain-programs.

Renewable Energy and Energy Storage
While not every government on the planet seems to be a fan of renewable energy, it keeps on outperforming fossil fuel after fossil fuel in places well suited to it—even without support from some of said governments.

One of the reasons for renewable energy’s continued growth is that energy efficiency levels keep on improving.
As a result, an increased number of coal plants are being forced to close due to an inability to compete, and the UK went coal-free for a record two weeks.
We are also seeing more and more financial institutions refusing to fund fossil fuel projects. One such example is the European Investment Bank.
Renewable energy’s advance is tied at the hip to the rise of energy storage, which also had a breakout 2019, in part thanks to investments from the likes of Bill Gates.
The size and capabilities of energy storage also grew in 2019. The best illustration came from Australia were Tesla’s mega-battery proved that energy storage has reached a stage where it can prop up entire energy grids.

Image Credit: Mathew Schwartz / Unsplash Continue reading

Posted in Human Robots

#436426 Video Friday: This Robot Refuses to Fall ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Robotic Arena – January 25, 2020 – Wrocław, Poland
DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

In case you somehow missed the massive Skydio 2 review we posted earlier this week, the first batches of the drone are now shipping. Each drone gets a lot of attention before it goes out the door, and here’s a behind-the-scenes clip of the process.

[ Skydio ]

Sphero RVR is one of the 15 robots on our robot gift guide this year. Here’s a new video Sphero just released showing some of the things you can do with the robot.

[ RVR ]

NimbRo-OP2 has some impressive recovery skills from the obligatory research-motivated robot abuse.

[ NimbRo ]

Teams seeking to qualify for the Virtual Urban Circuit of the Subterranean Challenge can access practice worlds to test their approaches prior to submitting solutions for the competition. This video previews three of the practice environments.

[ DARPA SubT ]

Stretchable skin-like robots that can be rolled up and put in your pocket have been developed by a University of Bristol team using a new way of embedding artificial muscles and electrical adhesion into soft materials.

[ Bristol ]

Happy Holidays from ABB!

Helping New York celebrate the festive season, twelve ABB robots are interacting with visitors to Bloomingdale’s iconic holiday celebration at their 59th Street flagship store. ABB’s robots are the main attraction in three of Bloomingdale’s twelve-holiday window displays at Lexington and Third Avenue, as ABB demonstrates the potential for its robotics and automation technology to revolutionize visual merchandising and make the retail experience more dynamic and whimsical.

[ ABB ]

We introduce pelican eel–inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel’s stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior.

And here’s a real pelican eel:

[ Science Robotics ]

Delft Dynamics’ updated anti-drone system involves a tether, mid-air net gun, and even a parachute.

[ Delft Dynamics ]

Teleoperation is a great way of helping robots with complex tasks, especially if you can do it through motion capture. But what if you’re teleoperating a non-anthropomorphic robot? Columbia’s ROAM Lab is working on it.

[ Paper ] via [ ROAM Lab ]

I don’t know how I missed this video last year because it’s got a steely robot hand squeezing a cute lil’ chick.

[ MotionLib ] via [ RobotStart ]

In this video we present results of a trajectory generation method for autonomous overtaking of unexpected obstacles in a dynamic urban environment. In these settings, blind spots can arise from perception limitations. For example when overtaking unexpected objects on the vehicle’s ego lane on a two-way street. In this case, a human driver would first make sure that the opposite lane is free and that there is enough room to successfully execute the maneuver, and then it would cut into the opposite lane in order to execute the maneuver successfully. We consider the practical problem of autonomous overtaking when the coverage of the perception system is impaired due to occlusion.

[ Paper ]

New weirdness from Toio!

[ Toio ]

Palo Alto City Library won a technology innovation award! Watch to see how Senior Librarian Dan Lou is using Misty to enhance their technology programs to inspire and educate customers.

[ Misty Robotics ]

We consider the problem of reorienting a rigid object with arbitrary known shape on a table using a two-finger pinch gripper. Reorienting problem is challenging because of its non-smoothness and high dimensionality. In this work, we focus on solving reorienting using pivoting, in which we allow the grasped object to rotate between fingers. Pivoting decouples the gripper rotation from the object motion, making it possible to reorient an object under strict robot workspace constraints.

[ CMU ]

How can a mobile robot be a good pedestrian without bumping into you on the sidewalk? It must be hard for a robot to navigate in crowded environments since the flow of traffic follows implied social rules. But researchers from MIT developed an algorithm that teaches mobile robots to maneuver in crowds of people, respecting their natural behaviour.

[ Roboy Research Reviews ]

What happens when humans and robots make art together? In this awe-inspiring talk, artist Sougwen Chung shows how she “taught” her artistic style to a machine — and shares the results of their collaboration after making an unexpected discovery: robots make mistakes, too. “Part of the beauty of human and machine systems is their inherent, shared fallibility,” she says.

[ TED ]

Last month at the Cooper Union in New York City, IEEE TechEthics hosted a public panel session on the facts and misperceptions of autonomous vehicles, part of the IEEE TechEthics Conversations Series. The speakers were: Jason Borenstein from Georgia Tech; Missy Cummings from Duke University; Jack Pokrzywa from SAE; and Heather M. Roff from Johns Hopkins Applied Physics Laboratory. The panel was moderated by Mark A. Vasquez, program manager for IEEE TechEthics.

[ IEEE TechEthics ]

Two videos this week from Lex Fridman’s AI podcast: Noam Chomsky, and Whitney Cummings.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Jeff Clune at the University of Wyoming, on “Improving Robot and Deep Reinforcement Learning via Quality Diversity and Open-Ended Algorithms.”

Quality Diversity (QD) algorithms are those that seek to produce a diverse set of high-performing solutions to problems. I will describe them and a number of their positive attributes. I will then summarize our Nature paper on how they, when combined with Bayesian Optimization, produce a learning algorithm that enables robots, after being damaged, to adapt in 1-2 minutes in order to continue performing their mission, yielding state-of-the-art robot damage recovery. I will next describe our QD-based Go-Explore algorithm, which dramatically improves the ability of deep reinforcement learning algorithms to solve previously unsolvable problems wherein reward signals are sparse, meaning that intelligent exploration is required. Go-Explore solves Montezuma’s Revenge, considered by many to be a major AI research challenge. Finally, I will motivate research into open-ended algorithms, which seek to innovate endlessly, and introduce our POET algorithm, which generates its own training challenges while learning to solve them, automatically creating a curricula for robots to learn an expanding set of diverse skills. POET creates and solves challenges that are unsolvable with traditional deep reinforcement learning techniques.

[ CMU RI ] Continue reading

Posted in Human Robots

#436256 Alphabet Is Developing a Robot to Take ...

Robots excel at carrying out specialized tasks in controlled environments, but put them in your average office and they’d be lost. Alphabet wants to change that by developing what they call the Everyday Robot, which could learn to help us out with our daily chores.

For a long time most robots were painstakingly hand-coded to carry out their functions, but since the deep learning revolution earlier this decade there’s been a growing effort to imbue them with AI that lets them learn new tasks through experience.

That’s led to some impressive breakthroughs, like a robotic hand nimble enough to solve a Rubik’s cube and a robotic arm that can accurately toss bananas across a room.

And it turns out Alphabet’s early-stage research and development division, Alphabet X, has also secretly been using similar machine learning techniques to develop robots adaptable enough to carry out a range of tasks in cluttered and unpredictable human environments like homes and offices.

The robots they’ve built combine a wheeled base with a single arm and a head full of sensors (including LIDAR) for 3D scanning, borrowed from Alphabet’s self-driving car division, Waymo.

At the minute, though, they’re largely restricted to sorting trash for recycling, project leader Hans Peter Brondmo writes in a blog post. While that might sound mundane, identifying different kinds of trash, grasping it, and moving it to the correct bin is still a difficult thing for a robot to do consistently. Some of the robots also have to navigate around the office to sort trash at various recycling stations.

Alphabet says even its human staff were getting it wrong 20 percent of the time, but after several months of training the robots have managed to get that down to 3.5 percent.

Every day, 30 robots toil away in what’s been dubbed the “playpen” sorting trash, and then every night thousands of virtual robots continue to practice in a simulation. This experience is then used to update the robots’ control algorithms each night. All the robots also share their experiences with the others through a process called collaborative learning.

The process isn’t flawless, though. Simonite notes that while the robots exhibit some uncannily smart behaviors, like stirring piles of rubbish to make it easier to grab specific items, they also frequently miss or fumble the objects they’re trying to grasp.

Nonetheless, the project’s leaders are happy with their progress so far. And the hope is that creating robots that are able to learn from little more than experience in complex environments like an office should be a first step towards general-purpose robots that can pick up a variety of useful skills to assist humans.

Taking that next step will be the major test of the project. So far there’s been limited evidence that experience gained by robots in one task can be transferred to learning another. That’s something the group hopes to demonstrate next year.

And it seems there may be more robot news coming out of Alphabet X soon. The group has several other robotics “moonshots” in the pipeline, built on technology and talent transferred over in 2016 from the remains of a broadly unsuccessful splurge on robotics startups by former Google executive Andy Rubin.

Whether this robotics renaissance at Alphabet will finally help robots break into our homes and offices remains to be seen, but with the resources they have at hand, they just may be able to make it happen.

Image Credit: Everyday Robot, Alphabet X Continue reading

Posted in Human Robots

#436207 This Week’s Awesome Tech Stories From ...

COMPUTING
A Giant Superfast AI Chip Is Being Used to Find Better Cancer Drugs
Karen Hao | MIT Technology Review
“Thus far, Cerebras’s computer has checked all the boxes. Thanks to its chip size—it is larger than an iPad and has 1.2 trillion transistors for making calculations—it isn’t necessary to hook multiple smaller processors together, which can slow down model training. In testing, it has already shrunk the training time of models from weeks to hours.”

MEDICINE
Humans Put Into Suspended Animation for First Time
Ian Sample | The Guardian
“The process involves rapidly cooling the brain to less than 10C by replacing the patient’s blood with ice-cold saline solution. Typically the solution is pumped directly into the aorta, the main artery that carries blood away from the heart to the rest of the body.”

DRONES
This Transforming Drone Can Be Fired Straight Out of a Cannon
James Vincent | The Verge
“Drones are incredibly useful machines in the air, but getting them up and flying can be tricky, especially in crowded, windy, or emergency scenarios when speed is a factor. But a group of researchers from Caltech university and NASA’s Jet Propulsion Laboratory have come up with an elegant and oh-so-fun solution: fire the damn thing out of a cannon.”

ROBOTICS
Alphabet’s Dream of an ‘Everyday Robot’ Is Just Out of Reach
Tom Simonite | Wired
“Sorting trash was chosen as a convenient challenge to test the project’s approach to creating more capable robots. It’s using artificial intelligence software developed in collaboration with Google to make robots that learn complex tasks through on-the-job experience. The hope is to make robots less reliant on human coding for their skills, and capable of adapting quickly to complex new tasks and environments.”

ENVIRONMENT
The Electric Car Revolution May Take a Lot Longer Than Expected
James Temple | MIT Technology Review
“A new report from the MIT Energy Initiative warns that EVs may never reach the same sticker price so long as they rely on lithium-ion batteries, the energy storage technology that powers most of today’s consumer electronics. In fact, it’s likely to take another decade just to eliminate the difference in the lifetime costs between the vehicle categories, which factors in the higher fuel and maintenance expenses of standard cars and trucks.”

SPACE
How Two Intruders From Interstellar Space Are Upending Astronomy
Alexandra Witze | Nature
“From the tallest peak in Hawaii to a high plateau in the Andes, some of the biggest telescopes on Earth will point towards a faint smudge of light over the next few weeks. …What they’re looking for is a rare visitor that is about to make its closest approach to the Sun. After that, they have just months to grab as much information as they can from the object before it disappears forever into the blackness of space.”

Image Credit: Simone Hutsch / Unsplash Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots