Tag Archives: term
#431689 Robotic Materials Will Distribute ...
The classical view of a robot as a mechanical body with a central “brain” that controls its behavior could soon be on its way out. The authors of a recent article in Science Robotics argue that future robots will have intelligence distributed throughout their bodies.
The concept, and the emerging discipline behind it, are variously referred to as “material robotics” or “robotic materials” and are essentially a synthesis of ideas from robotics and materials science. Proponents say advances in both fields are making it possible to create composite materials capable of combining sensing, actuation, computation, and communication and operating independently of a central processing unit.
Much of the inspiration for the field comes from nature, with practitioners pointing to the adaptive camouflage of the cuttlefish’s skin, the ability of bird wings to morph in response to different maneuvers, or the banyan tree’s ability to grow roots above ground to support new branches.
Adaptive camouflage and morphing wings have clear applications in the defense and aerospace sector, but the authors say similar principles could be used to create everything from smart tires able to calculate the traction needed for specific surfaces to grippers that can tailor their force to the kind of object they are grasping.
“Material robotics represents an acknowledgment that materials can absorb some of the challenges of acting and reacting to an uncertain world,” the authors write. “Embedding distributed sensors and actuators directly into the material of the robot’s body engages computational capabilities and offloads the rigid information and computational requirements from the central processing system.”
The idea of making materials more adaptive is not new, and there are already a host of “smart materials” that can respond to stimuli like heat, mechanical stress, or magnetic fields by doing things like producing a voltage or changing shape. These properties can be carefully tuned to create materials capable of a wide variety of functions such as movement, self-repair, or sensing.
The authors say synthesizing these kinds of smart materials, alongside other advanced materials like biocompatible conductors or biodegradable elastomers, is foundational to material robotics. But the approach also involves integration of many different capabilities in the same material, careful mechanical design to make the most of mechanical capabilities, and closing the loop between sensing and control within the materials themselves.
While there are stand-alone applications for such materials in the near term, like smart fabrics or robotic grippers, the long-term promise of the field is to distribute decision-making in future advanced robots. As they are imbued with ever more senses and capabilities, these machines will be required to shuttle huge amounts of control and feedback data to and fro, placing a strain on both their communication and computation abilities.
Materials that can process sensor data at the source and either autonomously react to it or filter the most relevant information to be passed on to the central processing unit could significantly ease this bottleneck. In a press release related to an earlier study, Nikolaus Correll, an assistant professor of computer science at the University of Colorado Boulder who is also an author of the current paper, pointed out this is a tactic used by the human body.
“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” he said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”
There are still considerable challenges to realizing this vision, though, the authors say, noting that so far the young field has only produced proof of concepts. The biggest challenge remains manufacturing robotic materials in a way that combines all these capabilities in a small enough package at an affordable cost.
Luckily, the authors note, the field can draw on convergent advances in both materials science, such as the development of new bulk materials with inherent multifunctionality, and robotics, such as the ever tighter integration of components.
And they predict that doing away with the prevailing dichotomy of “brain versus body” could lay the foundations for the emergence of “robots with brains in their bodies—the foundation of inexpensive and ubiquitous robots that will step into the real world.”
Image Credit: Anatomy Insider / Shutterstock.com Continue reading
#431671 The Doctor in the Machine: How AI Is ...
Artificial intelligence has received its fair share of hype recently. However, it’s hype that’s well-founded: IDC predicts worldwide spend on AI and cognitive computing will culminate to a whopping $46 billion (with a “b”) by 2020, and all the tech giants are jumping on board faster than you can say “ROI.” But what is AI, exactly?
According to Hilary Mason, AI today is being misused as a sort of catch-all term to basically describe “any system that uses data to do anything.” But it’s so much more than that. A truly artificially intelligent system is one that learns on its own, one that’s capable of crunching copious amounts of data in order to create associations and intelligently mimic actual human behavior.
It’s what powers the technology anticipating our next online purchase (Amazon), or the virtual assistant that deciphers our voice commands with incredible accuracy (Siri), or even the hipster-friendly recommendation engine that helps you discover new music before your friends do (Pandora). But AI is moving past these consumer-pleasing “nice-to-haves” and getting down to serious business: saving our butts.
Much in the same way robotics entered manufacturing, AI is making its mark in healthcare by automating mundane, repetitive tasks. This is especially true in the case of detecting cancer. By leveraging the power of deep learning, algorithms can now be trained to distinguish between sets of pixels in an image that represents cancer versus sets that don’t—not unlike how Facebook’s image recognition software tags pictures of our friends without us having to type in their names first. This software can then go ahead and scour millions of medical images (MRIs, CT scans, etc.) in a single day to detect anomalies on a scope that humans just aren’t capable of. That’s huge.
As if that wasn’t enough, these algorithms are constantly learning and evolving, getting better at making these associations with each new data set that gets fed to them. Radiology, dermatology, and pathology will experience a giant upheaval as tech giants and startups alike jump in to bring these deep learning algorithms to a hospital near you.
In fact, some already are: the FDA recently gave their seal of approval for an AI-powered medical imaging platform that helps doctors analyze and diagnose heart anomalies. This is the first time the FDA has approved a machine learning application for use in a clinical setting.
But how efficient is AI compared to humans, really? Well, aside from the obvious fact that software programs don’t get bored or distracted or have to check Facebook every twenty minutes, AI is exponentially better than us at analyzing data.
Take, for example, IBM’s Watson. Watson analyzed genomic data from both tumor cells and healthy cells and was ultimately able to glean actionable insights in a mere 10 minutes. Compare that to the 160 hours it would have taken a human to analyze that same data. Diagnoses aside, AI is also being leveraged in pharmaceuticals to aid in the very time-consuming grunt work of discovering new drugs, and all the big players are getting involved.
But AI is far from being just a behind-the-scenes player. Gartner recently predicted that by 2025, 50 percent of the population will rely on AI-powered “virtual personal health assistants” for their routine primary care needs. What this means is that consumer-facing voice and chat-operated “assistants” (think Siri or Cortana) would, in effect, serve as a central hub of interaction for all our connected health devices and the algorithms crunching all our real-time biometric data. These assistants would keep us apprised of our current state of well-being, acting as a sort of digital facilitator for our personal health objectives and an always-on health alert system that would notify us when we actually need to see a physician.
Slowly, and thanks to the tsunami of data and advancements in self-learning algorithms, healthcare is transitioning from a reactive model to more of a preventative model—and it’s completely upending the way care is delivered. Whether Elon Musk’s dystopian outlook on AI holds any weight or not is yet to be determined. But one thing’s certain: for the time being, artificial intelligence is saving our lives.
Image Credit: Jolygon / Shutterstock.com Continue reading
#431599 8 Ways AI Will Transform Our Cities by ...
How will AI shape the average North American city by 2030? A panel of experts assembled as part of a century-long study into the impact of AI thinks its effects will be profound.
The One Hundred Year Study on Artificial Intelligence is the brainchild of Eric Horvitz, technical fellow and a managing director at Microsoft Research.
Every five years a panel of experts will assess the current state of AI and its future directions. The first panel, comprised of experts in AI, law, political science, policy, and economics, was launched last fall and decided to frame their report around the impact AI will have on the average American city. Here’s how they think it will affect eight key domains of city life in the next fifteen years.
1. Transportation
The speed of the transition to AI-guided transport may catch the public by surprise. Self-driving vehicles will be widely adopted by 2020, and it won’t just be cars — driverless delivery trucks, autonomous delivery drones, and personal robots will also be commonplace.
Uber-style “cars as a service” are likely to replace car ownership, which may displace public transport or see it transition towards similar on-demand approaches. Commutes will become a time to relax or work productively, encouraging people to live further from home, which could combine with reduced need for parking to drastically change the face of modern cities.
Mountains of data from increasing numbers of sensors will allow administrators to model individuals’ movements, preferences, and goals, which could have major impact on the design city infrastructure.
Humans won’t be out of the loop, though. Algorithms that allow machines to learn from human input and coordinate with them will be crucial to ensuring autonomous transport operates smoothly. Getting this right will be key as this will be the public’s first experience with physically embodied AI systems and will strongly influence public perception.
2. Home and Service Robots
Robots that do things like deliver packages and clean offices will become much more common in the next 15 years. Mobile chipmakers are already squeezing the power of last century’s supercomputers into systems-on-a-chip, drastically boosting robots’ on-board computing capacity.
Cloud-connected robots will be able to share data to accelerate learning. Low-cost 3D sensors like Microsoft’s Kinect will speed the development of perceptual technology, while advances in speech comprehension will enhance robots’ interactions with humans. Robot arms in research labs today are likely to evolve into consumer devices around 2025.
But the cost and complexity of reliable hardware and the difficulty of implementing perceptual algorithms in the real world mean general-purpose robots are still some way off. Robots are likely to remain constrained to narrow commercial applications for the foreseeable future.
3. Healthcare
AI’s impact on healthcare in the next 15 years will depend more on regulation than technology. The most transformative possibilities of AI in healthcare require access to data, but the FDA has failed to find solutions to the difficult problem of balancing privacy and access to data. Implementation of electronic health records has also been poor.
If these hurdles can be cleared, AI could automate the legwork of diagnostics by mining patient records and the scientific literature. This kind of digital assistant could allow doctors to focus on the human dimensions of care while using their intuition and experience to guide the process.
At the population level, data from patient records, wearables, mobile apps, and personal genome sequencing will make personalized medicine a reality. While fully automated radiology is unlikely, access to huge datasets of medical imaging will enable training of machine learning algorithms that can “triage” or check scans, reducing the workload of doctors.
Intelligent walkers, wheelchairs, and exoskeletons will help keep the elderly active while smart home technology will be able to support and monitor them to keep them independent. Robots may begin to enter hospitals carrying out simple tasks like delivering goods to the right room or doing sutures once the needle is correctly placed, but these tasks will only be semi-automated and will require collaboration between humans and robots.
4. Education
The line between the classroom and individual learning will be blurred by 2030. Massive open online courses (MOOCs) will interact with intelligent tutors and other AI technologies to allow personalized education at scale. Computer-based learning won’t replace the classroom, but online tools will help students learn at their own pace using techniques that work for them.
AI-enabled education systems will learn individuals’ preferences, but by aggregating this data they’ll also accelerate education research and the development of new tools. Online teaching will increasingly widen educational access, making learning lifelong, enabling people to retrain, and increasing access to top-quality education in developing countries.
Sophisticated virtual reality will allow students to immerse themselves in historical and fictional worlds or explore environments and scientific objects difficult to engage with in the real world. Digital reading devices will become much smarter too, linking to supplementary information and translating between languages.
5. Low-Resource Communities
In contrast to the dystopian visions of sci-fi, by 2030 AI will help improve life for the poorest members of society. Predictive analytics will let government agencies better allocate limited resources by helping them forecast environmental hazards or building code violations. AI planning could help distribute excess food from restaurants to food banks and shelters before it spoils.
Investment in these areas is under-funded though, so how quickly these capabilities will appear is uncertain. There are fears valueless machine learning could inadvertently discriminate by correlating things with race or gender, or surrogate factors like zip codes. But AI programs are easier to hold accountable than humans, so they’re more likely to help weed out discrimination.
6. Public Safety and Security
By 2030 cities are likely to rely heavily on AI technologies to detect and predict crime. Automatic processing of CCTV and drone footage will make it possible to rapidly spot anomalous behavior. This will not only allow law enforcement to react quickly but also forecast when and where crimes will be committed. Fears that bias and error could lead to people being unduly targeted are justified, but well-thought-out systems could actually counteract human bias and highlight police malpractice.
Techniques like speech and gait analysis could help interrogators and security guards detect suspicious behavior. Contrary to concerns about overly pervasive law enforcement, AI is likely to make policing more targeted and therefore less overbearing.
7. Employment and Workplace
The effects of AI will be felt most profoundly in the workplace. By 2030 AI will be encroaching on skilled professionals like lawyers, financial advisers, and radiologists. As it becomes capable of taking on more roles, organizations will be able to scale rapidly with relatively small workforces.
AI is more likely to replace tasks rather than jobs in the near term, and it will also create new jobs and markets, even if it’s hard to imagine what those will be right now. While it may reduce incomes and job prospects, increasing automation will also lower the cost of goods and services, effectively making everyone richer.
These structural shifts in the economy will require political rather than purely economic responses to ensure these riches are shared. In the short run, this may include resources being pumped into education and re-training, but longer term may require a far more comprehensive social safety net or radical approaches like a guaranteed basic income.
8. Entertainment
Entertainment in 2030 will be interactive, personalized, and immeasurably more engaging than today. Breakthroughs in sensors and hardware will see virtual reality, haptics and companion robots increasingly enter the home. Users will be able to interact with entertainment systems conversationally, and they will show emotion, empathy, and the ability to adapt to environmental cues like the time of day.
Social networks already allow personalized entertainment channels, but the reams of data being collected on usage patterns and preferences will allow media providers to personalize entertainment to unprecedented levels. There are concerns this could endow media conglomerates with unprecedented control over people’s online experiences and the ideas to which they are exposed.
But advances in AI will also make creating your own entertainment far easier and more engaging, whether by helping to compose music or choreograph dances using an avatar. Democratizing the production of high-quality entertainment makes it nearly impossible to predict how highly fluid human tastes for entertainment will develop.
Image Credit: Asgord / Shutterstock.com Continue reading
#431592 Reactive Content Will Get to Know You ...
The best storytellers react to their audience. They look for smiles, signs of awe, or boredom; they simultaneously and skillfully read both the story and their sitters. Kevin Brooks, a seasoned storyteller working for Motorola’s Human Interface Labs, explains, “As the storyteller begins, they must tune in to… the audience’s energy. Based on this energy, the storyteller will adjust their timing, their posture, their characterizations, and sometimes even the events of the story. There is a dialog between audience and storyteller.”
Shortly after I read the script to Melita, the latest virtual reality experience from Madrid-based immersive storytelling company Future Lighthouse, CEO Nicolas Alcalá explained to me that the piece is an example of “reactive content,” a concept he’s been working on since his days at Singularity University.
For the first time in history, we have access to technology that can merge the reactive and affective elements of oral storytelling with the affordances of digital media, weaving stunning visuals, rich soundtracks, and complex meta-narratives in a story arena that has the capability to know you more intimately than any conventional storyteller could.
It’s no understatement to say that the storytelling potential here is phenomenal.
In short, we can refer to content as reactive if it reads and reacts to users based on their body rhythms, emotions, preferences, and data points. Artificial intelligence is used to analyze users’ behavior or preferences to sculpt unique storylines and narratives, essentially allowing for a story that changes in real time based on who you are and how you feel.
The development of reactive content will allow those working in the industry to go one step further than simply translating the essence of oral storytelling into VR. Rather than having a narrative experience with a digital storyteller who can read you, reactive content has the potential to create an experience with a storyteller who knows you.
This means being able to subtly insert minor personal details that have a specific meaning to the viewer. When we talk to our friends we often use experiences we’ve shared in the past or knowledge of our audience to give our story as much resonance as possible. Targeting personal memories and aspects of our lives is a highly effective way to elicit emotions and aid in visualizing narratives. When you can do this with the addition of visuals, music, and characters—all lifted from someone’s past—you have the potential for overwhelmingly engaging and emotionally-charged content.
Future Lighthouse inform me that for now, reactive content will rely primarily on biometric feedback technology such as breathing, heartbeat, and eye tracking sensors. A simple example would be a story in which parts of the environment or soundscape change in sync with the user’s heartbeat and breathing, or characters who call you out for not paying attention.
The next step would be characters and situations that react to the user’s emotions, wherein algorithms analyze biometric information to make inferences about states of emotional arousal (“why are you so nervous?” etc.). Another example would be implementing the use of “arousal parameters,” where the audience can choose what level of “fear” they want from a VR horror story before algorithms modulate the experience using information from biometric feedback devices.
The company’s long-term goal is to gather research on storytelling conventions and produce a catalogue of story “wireframes.” This entails distilling the basic formula to different genres so they can then be fleshed out with visuals, character traits, and soundtracks that are tailored for individual users based on their deep data, preferences, and biometric information.
The development of reactive content will go hand in hand with a renewed exploration of diverging, dynamic storylines, and multi-narratives, a concept that hasn’t had much impact in the movie world thus far. In theory, the idea of having a story that changes and mutates is captivating largely because of our love affair with serendipity and unpredictability, a cultural condition theorist Arthur Kroker refers to as the “hypertextual imagination.” This feeling of stepping into the unknown with the possibility of deviation from the habitual translates as a comforting reminder that our own lives can take exciting and unexpected turns at any moment.
The inception of the concept into mainstream culture dates to the classic Choose Your Own Adventure book series that launched in the late 70s, which in its literary form had great success. However, filmic takes on the theme have made somewhat less of an impression. DVDs like I’m Your Man (1998) and Switching (2003) both use scene selection tools to determine the direction of the storyline.
A more recent example comes from Kino Industries, who claim to have developed the technology to allow filmmakers to produce interactive films in which viewers can use smartphones to quickly vote on which direction the narrative takes at numerous decision points throughout the film.
The main problem with diverging narrative films has been the stop-start nature of the interactive element: when I’m immersed in a story I don’t want to have to pick up a controller or remote to select what’s going to happen next. Every time the audience is given the option to take a new path (“press this button”, “vote on X, Y, Z”) the narrative— and immersion within that narrative—is temporarily halted, and it takes the mind a while to get back into this state of immersion.
Reactive content has the potential to resolve these issues by enabling passive interactivity—that is, input and output without having to pause and actively make decisions or engage with the hardware. This will result in diverging, dynamic narratives that will unfold seamlessly while being dependent on and unique to the specific user and their emotions. Passive interactivity will also remove the game feel that can often be a symptom of interactive experiences and put a viewer somewhere in the middle: still firmly ensconced in an interactive dynamic narrative, but in a much subtler way.
While reading the Melita script I was particularly struck by a scene in which the characters start to engage with the user and there’s a synchronicity between the user’s heartbeat and objects in the virtual world. As the narrative unwinds and the words of Melita’s character get more profound, parts of the landscape, which seemed to be flashing and pulsating at random, come together and start to mimic the user’s heartbeat.
In 2013, Jane Aspell of Anglia Ruskin University (UK) and Lukas Heydrich of the Swiss Federal Institute of Technology proved that a user’s sense of presence and identification with a virtual avatar could be dramatically increased by syncing the on-screen character with the heartbeat of the user. The relationship between bio-digital synchronicity, immersion, and emotional engagement is something that will surely have revolutionary narrative and storytelling potential.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading