Tag Archives: term
#432538 Cloud Computing and Robotics: The ...
Cloud Robotics is a term that was popularized by James Kuffner after he brought together researchers from different relevant fields (robotics, machine learning, and computer vision) to assist in coming up with the initial Cloud Robotics concept. Cloud robotics, as the name suggests is bringing together cloud computing and robotics. In essence, taking all the …
The post Cloud Computing and Robotics: The Interesting Emerging Field of Cloud Robotics appeared first on TFOT. Continue reading
#432271 Your Shopping Experience Is on the Verge ...
Exponential technologies (AI, VR, 3D printing, and networks) are radically reshaping traditional retail.
E-commerce giants (Amazon, Walmart, Alibaba) are digitizing the retail industry, riding the exponential growth of computation.
Many brick-and-mortar stores have already gone bankrupt, or migrated their operations online.
Massive change is occurring in this arena.
For those “real-life stores” that survive, an evolution is taking place from a product-centric mentality to an experience-based business model by leveraging AI, VR/AR, and 3D printing.
Let’s dive in.
E-Commerce Trends
Last year, 3.8 billion people were connected online. By 2024, thanks to 5G, stratospheric and space-based satellites, we will grow to 8 billion people online, each with megabit to gigabit connection speeds.
These 4.2 billion new digital consumers will begin buying things online, a potential bonanza for the e-commerce world.
At the same time, entrepreneurs seeking to service these four-billion-plus new consumers can now skip the costly steps of procuring retail space and hiring sales clerks.
Today, thanks to global connectivity, contract production, and turnkey pack-and-ship logistics, an entrepreneur can go from an idea to building and scaling a multimillion-dollar business from anywhere in the world in record time.
And while e-commerce sales have been exploding (growing from $34 billion in Q1 2009 to $115 billion in Q3 2017), e-commerce only accounted for about 10 percent of total retail sales in 2017.
In 2016, global online sales totaled $1.8 trillion. Remarkably, this $1.8 trillion was spent by only 1.5 billion people — a mere 20 percent of Earth’s global population that year.
There’s plenty more room for digital disruption.
AI and the Retail Experience
For the business owner, AI will demonetize e-commerce operations with automated customer service, ultra-accurate supply chain modeling, marketing content generation, and advertising.
In the case of customer service, imagine an AI that is trained by every customer interaction, learns how to answer any consumer question perfectly, and offers feedback to product designers and company owners as a result.
Facebook’s handover protocol allows live customer service representatives and language-learning bots to work within the same Facebook Messenger conversation.
Taking it one step further, imagine an AI that is empathic to a consumer’s frustration, that can take any amount of abuse and come back with a smile every time. As one example, meet Ava. “Ava is a virtual customer service agent, to bring a whole new level of personalization and brand experience to that customer experience on a day-to-day basis,” says Greg Cross, CEO of Ava’s creator, an Austrian company called Soul Machines.
Predictive modeling and machine learning are also optimizing product ordering and the supply chain process. For example, Skubana, a platform for online sellers, leverages data analytics to provide entrepreneurs constant product performance feedback and maintain optimal warehouse stock levels.
Blockchain is set to follow suit in the retail space. ShipChain and Ambrosus plan to introduce transparency and trust into shipping and production, further reducing costs for entrepreneurs and consumers.
Meanwhile, for consumers, personal shopping assistants are shifting the psychology of the standard shopping experience.
Amazon’s Alexa marks an important user interface moment in this regard.
Alexa is in her infancy with voice search and vocal controls for smart homes. Already, Amazon’s Alexa users, on average, spent more on Amazon.com when purchasing than standard Amazon Prime customers — $1,700 versus $1,400.
As I’ve discussed in previous posts, the future combination of virtual reality shopping, coupled with a personalized, AI-enabled fashion advisor will make finding, selecting, and ordering products fast and painless for consumers.
But let’s take it one step further.
Imagine a future in which your personal AI shopper knows your desires better than you do. Possible? I think so. After all, our future AIs will follow us, watch us, and observe our interactions — including how long we glance at objects, our facial expressions, and much more.
In this future, shopping might be as easy as saying, “Buy me a new outfit for Saturday night’s dinner party,” followed by a surprise-and-delight moment in which the outfit that arrives is perfect.
In this future world of AI-enabled shopping, one of the most disruptive implications is that advertising is now dead.
In a world where an AI is buying my stuff, and I’m no longer in the decision loop, why would a big brand ever waste money on a Super Bowl advertisement?
The dematerialization, demonetization, and democratization of personalized shopping has only just begun.
The In-Store Experience: Experiential Retailing
In 2017, over 6,700 brick-and-mortar retail stores closed their doors, surpassing the former record year for store closures set in 2008 during the financial crisis. Regardless, business is still booming.
As shoppers seek the convenience of online shopping, brick-and-mortar stores are tapping into the power of the experience economy.
Rather than focusing on the practicality of the products they buy, consumers are instead seeking out the experience of going shopping.
The Internet of Things, artificial intelligence, and computation are exponentially improving the in-person consumer experience.
As AI dominates curated online shopping, AI and data analytics tools are also empowering real-life store owners to optimize staffing, marketing strategies, customer relationship management, and inventory logistics.
In the short term,retail store locations will serve as the next big user interface for production 3D printing (custom 3D printed clothes at the Ministry of Supply), virtual and augmented reality (DIY skills clinics), and the Internet of Things (checkout-less shopping).
In the long term,we’ll see how our desire for enhanced productivity and seamless consumption balances with our preference for enjoyable real-life consumer experiences — all of which will be driven by exponential technologies.
One thing is certain: the nominal shopping experience is on the verge of a major transformation.
Implications
The convergence of exponential technologies has already revamped how and where we shop, how we use our time, and how much we pay.
Twenty years ago, Amazon showed us how the web could offer each of us the long tail of available reading material, and since then, the world of e-commerce has exploded.
And yet we still haven’t experienced the cost savings coming our way from drone delivery, the Internet of Things, tokenized ecosystems, the impact of truly powerful AI, or even the other major applications for 3D printing and AR/VR.
Perhaps nothing will be more transformed than today’s $20 trillion retail sector.
Hold on, stay tuned, and get your AI-enabled cryptocurrency ready.
Join Me
Abundance Digital Online Community: I’ve created a digital/online community of bold, abundance-minded entrepreneurs called Abundance Digital.
Abundance Digital is my ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Zapp2Photo / Shutterstock.com Continue reading
#432190 In the Future, There Will Be No Limit to ...
New planets found in distant corners of the galaxy. Climate models that may improve our understanding of sea level rise. The emergence of new antimalarial drugs. These scientific advances and discoveries have been in the news in recent months.
While representing wildly divergent disciplines, from astronomy to biotechnology, they all have one thing in common: Artificial intelligence played a key role in their scientific discovery.
One of the more recent and famous examples came out of NASA at the end of 2017. The US space agency had announced an eighth planet discovered in the Kepler-90 system. Scientists had trained a neural network—a computer with a “brain” modeled on the human mind—to re-examine data from Kepler, a space-borne telescope with a four-year mission to seek out new life and new civilizations. Or, more precisely, to find habitable planets where life might just exist.
The researchers trained the artificial neural network on a set of 15,000 previously vetted signals until it could identify true planets and false positives 96 percent of the time. It then went to work on weaker signals from nearly 700 star systems with known planets.
The machine detected Kepler 90i—a hot, rocky planet that orbits its sun about every two Earth weeks—through a nearly imperceptible change in brightness captured when a planet passes a star. It also found a sixth Earth-sized planet in the Kepler-80 system.
AI Handles Big Data
The application of AI to science is being driven by three great advances in technology, according to Ross King from the Manchester Institute of Biotechnology at the University of Manchester, leader of a team that developed an artificially intelligent “scientist” called Eve.
Those three advances include much faster computers, big datasets, and improved AI methods, King said. “These advances increasingly give AI superhuman reasoning abilities,” he told Singularity Hub by email.
AI systems can flawlessly remember vast numbers of facts and extract information effortlessly from millions of scientific papers, not to mention exhibit flawless logical reasoning and near-optimal probabilistic reasoning, King says.
AI systems also beat humans when it comes to dealing with huge, diverse amounts of data.
That’s partly what attracted a team of glaciologists to turn to machine learning to untangle the factors involved in how heat from Earth’s interior might influence the ice sheet that blankets Greenland.
Algorithms juggled 22 geologic variables—such as bedrock topography, crustal thickness, magnetic anomalies, rock types, and proximity to features like trenches, ridges, young rifts, and volcanoes—to predict geothermal heat flux under the ice sheet throughout Greenland.
The machine learning model, for example, predicts elevated heat flux upstream of Jakobshavn Glacier, the fastest-moving glacier in the world.
“The major advantage is that we can incorporate so many different types of data,” explains Leigh Stearns, associate professor of geology at Kansas University, whose research takes her to the polar regions to understand how and why Earth’s great ice sheets are changing, questions directly related to future sea level rise.
“All of the other models just rely on one parameter to determine heat flux, but the [machine learning] approach incorporates all of them,” Stearns told Singularity Hub in an email. “Interestingly, we found that there is not just one parameter…that determines the heat flux, but a combination of many factors.”
The research was published last month in Geophysical Research Letters.
Stearns says her team hopes to apply high-powered machine learning to characterize glacier behavior over both short and long-term timescales, thanks to the large amounts of data that she and others have collected over the last 20 years.
Emergence of Robot Scientists
While Stearns sees machine learning as another tool to augment her research, King believes artificial intelligence can play a much bigger role in scientific discoveries in the future.
“I am interested in developing AI systems that autonomously do science—robot scientists,” he said. Such systems, King explained, would automatically originate hypotheses to explain observations, devise experiments to test those hypotheses, physically run the experiments using laboratory robotics, and even interpret the results. The conclusions would then influence the next cycle of hypotheses and experiments.
His AI scientist Eve recently helped researchers discover that triclosan, an ingredient commonly found in toothpaste, could be used as an antimalarial drug against certain strains that have developed a resistance to other common drug therapies. The research was published in the journal Scientific Reports.
Automation using artificial intelligence for drug discovery has become a growing area of research, as the machines can work orders of magnitude faster than any human. AI is also being applied in related areas, such as synthetic biology for the rapid design and manufacture of microorganisms for industrial uses.
King argues that machines are better suited to unravel the complexities of biological systems, with even the most “simple” organisms are host to thousands of genes, proteins, and small molecules that interact in complicated ways.
“Robot scientists and semi-automated AI tools are essential for the future of biology, as there are simply not enough human biologists to do the necessary work,” he said.
Creating Shockwaves in Science
The use of machine learning, neural networks, and other AI methods can often get better results in a fraction of the time it would normally take to crunch data.
For instance, scientists at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign, have a deep learning system for the rapid detection and characterization of gravitational waves. Gravitational waves are disturbances in spacetime, emanating from big, high-energy cosmic events, such as the massive explosion of a star known as a supernova. The “Holy Grail” of this type of research is to detect gravitational waves from the Big Bang.
Dubbed Deep Filtering, the method allows real-time processing of data from LIGO, a gravitational wave observatory comprised of two enormous laser interferometers located thousands of miles apart in California and Louisiana. The research was published in Physics Letters B. You can watch a trippy visualization of the results below.
In a more down-to-earth example, scientists published a paper last month in Science Advances on the development of a neural network called ConvNetQuake to detect and locate minor earthquakes from ground motion measurements called seismograms.
ConvNetQuake uncovered 17 times more earthquakes than traditional methods. Scientists say the new method is particularly useful in monitoring small-scale seismic activity, which has become more frequent, possibly due to fracking activities that involve injecting wastewater deep underground. You can learn more about ConvNetQuake in this video:
King says he believes that in the long term there will be no limit to what AI can accomplish in science. He and his team, including Eve, are currently working on developing cancer therapies under a grant from DARPA.
“Robot scientists are getting smarter and smarter; human scientists are not,” he says. “Indeed, there is arguably a case that human scientists are less good. I don’t see any scientist alive today of the stature of a Newton or Einstein—despite the vast number of living scientists. The Physics Nobel [laureate] Frank Wilczek is on record as saying (10 years ago) that in 100 years’ time the best physicist will be a machine. I agree.”
Image Credit: Romaset / Shutterstock.com Continue reading