Tag Archives: term
#435703 FarmWise Raises $14.5 Million to Teach ...
We humans spend most of our time getting hungry or eating, which must be really inconvenient for the people who have to produce food for everyone. For a sustainable and tasty future, we’ll need to make the most of what we’ve got by growing more food with less effort, and that’s where the robots can help us out a little bit.
FarmWise, a California-based startup, is looking to enhance farming efficiency by automating everything from seeding to harvesting, starting with the worst task of all: weeding. And they’ve just raised US $14.5 million to do it.
FarmWise’s autonomous, AI-enabled robots are designed to solve farmers’ most pressing challenges by performing a variety of farming functions – starting with weeding, and providing personalized care to every plant they touch. Using machine learning models, computer vision and high-precision mechanical tools, FarmWise’s sophisticated robots cleanly pick weeds from fields, leaving crops with the best opportunity to thrive while eliminating harmful chemical inputs. To date, FarmWise’s robots have efficiently removed weeds from more than 10 million plants.
FarmWise is not the first company to work on large mobile farming robots. A few years ago, we wrote about DeepField Robotics and their giant weed-punching robot. But considering how many humans there are, and how often we tend to get hungry, it certainly seems like there’s plenty of opportunity to go around.
Photo: FarmWise
FarmWise is collecting massive amounts of data about every single plant in an entire field, which is something that hasn’t been possible before. Above, one of the robots at a farm in Salinas Valley, Calif.
Weeding is just one thing that farm robots are able to do. FarmWise is collecting massive amounts of data about every single plant in an entire field, practically on the per-leaf level, which is something that hasn’t been possible before. Data like this could be used for all sorts of things, but generally, the long-term hope is that robots could tend to every single plant individually—weeding them, fertilizing them, telling them what good plants they are, and then mercilessly yanking them out of the ground at absolute peak ripeness. It’s not realistic to do this with human labor, but it’s the sort of data-intensive and monotonous task that robots could be ideal for.
The question with robots like this is not necessarily whether they can do the job that they were created for, because generally, they can—farms are structured enough environments that they lend themselves to autonomous robots, and the tasks are relatively well defined. The issue right now, I think, is whether robots are really time- and cost-effective for farmers. Capable robots are an expensive investment, and even if there is a shortage of human labor, will robots perform well enough to convince farmers to adopt the technology? That’s a solid maybe, and here’s hoping that FarmWise can figure out how to make it work.
[ FarmWise ] Continue reading
#435669 Watch World Champion Soccer Robots Take ...
RoboCup 2019 took place earlier this month down in Sydney, Australia. While there are many different events including RoboCup@Home, RoboCup Rescue, and a bunch of different soccer leagues, one of the most compelling events is middle-size league (MSL), where mobile robots each about the size of a fire hydrant play soccer using a regular size FIFA soccer ball. The robots are fully autonomous, making their own decisions in real time about when to dribble, pass, and shoot.
The long-term goal of RoboCup is this:
By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall win a soccer game, complying with the official rules of FIFA, against the winner of the most recent World Cup.
While the robots are certainly not there yet, they're definitely getting closer.
Even if you’re not a particular fan of soccer, it’s impressive to watch the robots coordinate with each other, setting up multiple passes and changing tactics on the fly in response to the movements of the other team. And the ability of these robots to shoot accurately is world-class (like, human world-class), as they’re seemingly able to put the ball in whatever corner of the goal they choose with split-second timing.
The final match was between Tech United from Eindhoven University of Technology in the Netherlands (whose robots are called TURTLE), and Team Water from Beijing Information Science & Technology University. Without spoiling it, I can tell you that the game was tied within just the last few seconds, meaning that it had to go to overtime. You can watch the entire match on YouTube, or a 5-minute commentated highlight video here:
It’s become a bit of a tradition to have the winning MSL robots play a team of what looks to be inexperienced adult humans wearing long pants and dress shoes.
The fact that the robots managed to score even once is pretty awesome, and it also looks like the robots are playing very conservatively (more so than the humans) so as not to accidentally injure any of us fragile meatbags with our spindly little legs. I get that RoboCup wants its first team of robots that can beat a human World Cup winning team to be humanoids, but at the moment, the MSL robots are where all the skill is.
To get calibrated on the state of the art for humanoid soccer robots, here’s the adult size final, Team Nimbro from the University of Bonn in Germany versus Team Sweaty from Offenburg University in Germany:
Yup, still a lot of falling over.
There’s lots more RoboCup on YouTube: Some channels to find more matches include the official RoboCup 2019 channel, and Tech United Eindhoven’s channel, which has both live English commentary and some highlight videos.
[ RoboCup 2019 ] Continue reading
#435614 3 Easy Ways to Evaluate AI Claims
When every other tech startup claims to use artificial intelligence, it can be tough to figure out if an AI service or product works as advertised. In the midst of the AI “gold rush,” how can you separate the nuggets from the fool’s gold?
There’s no shortage of cautionary tales involving overhyped AI claims. And applying AI technologies to health care, education, and law enforcement mean that getting it wrong can have real consequences for society—not just for investors who bet on the wrong unicorn.
So IEEE Spectrum asked experts to share their tips for how to identify AI hype in press releases, news articles, research papers, and IPO filings.
“It can be tricky, because I think the people who are out there selling the AI hype—selling this AI snake oil—are getting more sophisticated over time,” says Tim Hwang, director of the Harvard-MIT Ethics and Governance of AI Initiative.
The term “AI” is perhaps most frequently used to describe machine learning algorithms (and deep learning algorithms, which require even less human guidance) that analyze huge amounts of data and make predictions based on patterns that humans might miss. These popular forms of AI are mostly suited to specialized tasks, such as automatically recognizing certain objects within photos. For that reason, they are sometimes described as “weak” or “narrow” AI.
Some researchers and thought leaders like to talk about the idea of “artificial general intelligence” or “strong AI” that has human-level capacity and flexibility to handle many diverse intellectual tasks. But for now, this type of AI remains firmly in the realm of science fiction and is far from being realized in the real world.
“AI has no well-defined meaning and many so-called AI companies are simply trying to take advantage of the buzz around that term,” says Arvind Narayanan, a computer scientist at Princeton University. “Companies have even been caught claiming to use AI when, in fact, the task is done by human workers.”
Here are three ways to recognize AI hype.
Look for Buzzwords
One red flag is what Hwang calls the “hype salad.” This means stringing together the term “AI” with many other tech buzzwords such as “blockchain” or “Internet of Things.” That doesn’t automatically disqualify the technology, but spotting a high volume of buzzwords in a post, pitch, or presentation should raise questions about what exactly the company or individual has developed.
Other experts agree that strings of buzzwords can be a red flag. That’s especially true if the buzzwords are never really explained in technical detail, and are simply tossed around as vague, poorly-defined terms, says Marzyeh Ghassemi, a computer scientist and biomedical engineer at the University of Toronto in Canada.
“I think that if it looks like a Google search—picture ‘interpretable blockchain AI deep learning medicine’—it's probably not high-quality work,” Ghassemi says.
Hwang also suggests mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” It’s a way of seeing whether an individual or organization is treating the technology like magic. If so—that’s another good reason to ask more questions about what exactly the AI technology involves.
And even the visual imagery used to illustrate AI claims can indicate that an individual or organization is overselling the technology.
“I think that a lot of the people who work on machine learning on a day-to-day basis are pretty humble about the technology, because they’re largely confronted with how frequently it just breaks and doesn't work,” Hwang says. “And so I think that if you see a company or someone representing AI as a Terminator head, or a big glowing HAL eye or something like that, I think it’s also worth asking some questions.”
Interrogate the Data
It can be hard to evaluate AI claims without any relevant expertise, says Ghassemi at the University of Toronto. Even experts need to know the technical details of the AI algorithm in question and have some access to the training data that shaped the AI model’s predictions. Still, savvy readers with some basic knowledge of applied statistics can search for red flags.
To start, readers can look for possible bias in training data based on small sample sizes or a skewed population that fails to reflect the broader population, Ghassemi says. After all, an AI model trained only on health data from white men would not necessarily achieve similar results for other populations of patients.
“For me, a red flag is not demonstrating deep knowledge of how your labels are defined.”
—Marzyeh Ghassemi, University of Toronto
How machine learning and deep learning models perform also depends on how well humans labeled the sample datasets use to train these programs. This task can be straightforward when labeling photos of cats versus dogs, but gets more complicated when assigning disease diagnoses to certain patient cases.
Medical experts frequently disagree with each other on diagnoses—which is why many patients seek a second opinion. Not surprisingly, this ambiguity can also affect the diagnostic labels that experts assign in training datasets. “For me, a red flag is not demonstrating deep knowledge of how your labels are defined,” Ghassemi says.
Such training data can also reflect the cultural stereotypes and biases of the humans who labeled the data, says Narayanan at Princeton University. Like Ghassemi, he recommends taking a hard look at exactly what the AI has learned: “A good way to start critically evaluating AI claims is by asking questions about the training data.”
Another red flag is presenting an AI system’s performance through a single accuracy figure without much explanation, Narayanan says. Claiming that an AI model achieves “99 percent” accuracy doesn’t mean much without knowing the baseline for comparison—such as whether other systems have already achieved 99 percent accuracy—or how well that accuracy holds up in situations beyond the training dataset.
Narayanan also emphasized the need to ask questions about an AI model’s false positive rate—the rate of making wrong predictions about the presence of a given condition. Even if the false positive rate of a hypothetical AI service is just one percent, that could have major consequences if that service ends up screening millions of people for cancer.
Readers can also consider whether using AI in a given situation offers any meaningful improvement compared to traditional statistical methods, says Clayton Aldern, a data scientist and journalist who serves as managing director for Caldern LLC. He gave the hypothetical example of a “super-duper-fancy deep learning model” that achieves a prediction accuracy of 89 percent, compared to a “little polynomial regression model” that achieves 86 percent on the same dataset.
“We're talking about a three-percentage-point increase on something that you learned about in Algebra 1,” Aldern says. “So is it worth the hype?”
Don’t Ignore the Drawbacks
The hype surrounding AI isn’t just about the technical merits of services and products driven by machine learning. Overblown claims about the beneficial impacts of AI technology—or vague promises to address ethical issues related to deploying it—should also raise red flags.
“If a company promises to use its tech ethically, it is important to question if its business model aligns with that promise,” Narayanan says. “Even if employees have noble intentions, it is unrealistic to expect the company as a whole to resist financial imperatives.”
One example might be a company with a business model that depends on leveraging customers’ personal data. Such companies “tend to make empty promises when it comes to privacy,” Narayanan says. And, if companies hire workers to produce training data, it’s also worth asking whether the companies treat those workers ethically.
The transparency—or lack thereof—about any AI claim can also be telling. A company or research group can minimize concerns by publishing technical claims in peer-reviewed journals or allowing credible third parties to evaluate their AI without giving away big intellectual property secrets, Narayanan says. Excessive secrecy is a big red flag.
With these strategies, you don’t need to be a computer engineer or data scientist to start thinking critically about AI claims. And, Narayanan says, the world needs many people from different backgrounds for societies to fully consider the real-world implications of AI.
Editor’s Note: The original version of this story misspelled Clayton Aldern’s last name as Alderton. Continue reading