Tag Archives: tell
#434655 Purposeful Evolution: Creating an ...
More often than not, we fall into the trap of trying to predict and anticipate the future, forgetting that the future is up to us to envision and create. In the words of Buckminster Fuller, “We are called to be architects of the future, not its victims.”
But how, exactly, do we create a “good” future? What does such a future look like to begin with?
In Future Consciousness: The Path to Purposeful Evolution, Tom Lombardo analytically deconstructs how we can flourish in the flow of evolution and create a prosperous future for humanity. Scientifically informed, the books taps into themes that are constructive and profound, from both eastern and western philosophies.
As the executive director of the Center for Future Consciousness and an executive board member and fellow of the World Futures Studies Federation, Lombardo has dedicated his life and career to studying how we can create a “realistic, constructive, and ethical future.”
In a conversation with Singularity Hub, Lombardo discussed purposeful evolution, ethical use of technology, and the power of optimism.
Raya Bidshahri: Tell me more about the title of your book. What is future consciousness and what role does it play in what you call purposeful evolution?
Tom Lombardo: Humans have the unique capacity to purposefully evolve themselves because they possess future consciousness. Future consciousness contains all of the cognitive, motivational, and emotional aspects of the human mind that pertain to the future. It’s because we can imagine and think about the future that we can manipulate and direct our future evolution purposefully. Future consciousness empowers us to become self-responsible in our own evolutionary future. This is a jump in the process of evolution itself.
RB: In several places in the book, you discuss the importance of various eastern philosophies. What can we learn from the east that is often missing from western models?
TL: The key idea in the east that I have been intrigued by for decades is the Taoist Yin Yang, which is the idea that reality should be conceptualized as interdependent reciprocities.
In the west we think dualistically, or we attempt to think in terms of one end of the duality to the exclusion of the other, such as whole versus parts or consciousness versus physical matter. Yin Yang thinking is seeing how both sides of a “duality,” even though they appear to be opposites, are interdependent; you can’t have one without the other. You can’t have order without chaos, consciousness without the physical world, individuals without the whole, humanity without technology, and vice versa for all these complementary pairs.
RB: You talk about the importance of chaos and destruction in the trajectory of human progress. In your own words, “Creativity frequently involves destruction as a prelude to the emergence of some new reality.” Why is this an important principle for readers to keep in mind, especially in the context of today’s world?
TL: In order for there to be progress, there often has to be a disintegration of aspects of the old. Although progress and evolution involve a process of building up, growth isn’t entirely cumulative; it’s also transformative. Things fall apart and come back together again.
Throughout history, we have seen a transformation of what are the most dominant human professions or vocations. At some point, almost everybody worked in agriculture, but most of those agricultural activities were replaced by machines, and a lot of people moved over to industry. Now we’re seeing that jobs and functions are increasingly automated in industry, and humans are being pushed into vocations that involve higher cognitive and artistic skills, services, information technology, and so on.
RB: You raise valid concerns about the dark side of technological progress, especially when it’s combined with mass consumerism, materialism, and anti-intellectualism. How do we counter these destructive forces as we shape the future of humanity?
TL: We can counter such forces by always thoughtfully considering how our technologies are affecting the ongoing purposeful evolution of our conscious minds, bodies, and societies. We should ask ourselves what are the ethical values that are being served by the development of various technologies.
For example, we often hear the criticism that technologies that are driven by pure capitalism degrade human life and only benefit the few people who invented and market them. So we need to also think about what good these new technologies can serve. It’s what I mean when I talk about the “wise cyborg.” A wise cyborg is somebody who uses technology to serve wisdom, or values connected with wisdom.
RB: Creating an ideal future isn’t just about progress in technology, but also progress in morality. How we do decide what a “good” future is? What are some philosophical tools we can use to determine a code of ethics that is as objective as possible?
TL: Let’s keep in mind that ethics will always have some level of subjectivity. That being said, the way to determine a good future is to base it on the best theory of reality that we have, which is that we are evolutionary beings in an evolutionary universe and we are interdependent with everything else in that universe. Our ethics should acknowledge that we are fluid and interactive.
Hence, the “good” can’t be something static, and it can’t be something that pertains to me and not everybody else. It can’t be something that only applies to humans and ignores all other life on Earth, and it must be a mode of change rather than something stable.
RB: You present a consciousness-centered approach to creating a good future for humanity. What are some of the values we should develop in order to create a prosperous future?
TL: A sense of self-responsibility for the future is critical. This means realizing that the “good future” is something we have to take upon ourselves to create; we can’t let something or somebody else do that. We need to feel responsible both for our own futures and for the future around us.
Another one is going to be an informed and hopeful optimism about the future, because both optimism and pessimism have self-fulfilling prophecy effects. If you hope for the best, you are more likely to look deeply into your reality and increase the chance of it coming out that way. In fact, all of the positive emotions that have to do with future consciousness actually make people more intelligent and creative.
Some other important character virtues are discipline and tenacity, deep purpose, the love of learning and thinking, and creativity.
RB: Are you optimistic about the future? If so, what informs your optimism?
I justify my optimism the same way that I have seen Ray Kurzweil, Peter Diamandis, Kevin Kelly, and Steven Pinker justify theirs. If we look at the history of human civilization and even the history of nature, we see a progressive motion forward toward greater complexity and even greater intelligence. There’s lots of ups and downs, and catastrophes along the way, but the facts of nature and human history support the long-term expectation of continued evolution into the future.
You don’t have to be unrealistic to be optimistic. It’s also, psychologically, the more empowering position. That’s the position we should take if we want to maximize the chances of our individual or collective reality turning out better.
A lot of pessimists are pessimistic because they’re afraid of the future. There are lots of reasons to be afraid, but all in all, fear disempowers, whereas hope empowers.
Image Credit: Quick Shot / Shutterstock.com
We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading
#434599 This AI Can Tell Your Age by Analyzing ...
The plethora of bacteria and other tiny organisms that live in your gut, often referred to as the gut microbiome, don’t just help you digest food and fight disease. As detailed in a new study, they also provide a very accurate biological clock that shows your physical age—a fact that may open up wide-ranging possibilities for health and longevity studies.
Combining Machine Learning and Your Gut
The link between the gut biome and age is described by longevity researcher Alex Zhavoronkov and a team of his colleagues at Insilico Medicine, an artificial intelligence startup focused on drug discovery, biomarker development, and aging research.
Relatively little is known about how our gut biomes transition from one stage to another as we age, or about links between our age and the state of our gut biomes. In their paper, which is awaiting peer review but can be found on the preprint server bioRxiv, the team describes how they examined 3,663 curated samples of gut bacteria from 1,165 healthy people, aged 20-90, from countries in Europe, Asia, and North America. Roughly a third of samples came from the 20-39 age group, a third from individuals between 40-59, and a third from people between 60-90 years old.
A deep learning algorithm was then trained on data on 1,673 different microbial species from 90 percent of the samples. The AI was then tasked with predicting the ages of the remaining 10 percent of participants solely from data on their gut bacteria.
The Accurate Bacterial Clock
The results, described as the first method to predict a human’s chronological age via gut microbiota analysis, showed that the system was able to predict age to within four years based on the gut bacteria data. Furthermore, the results seem to indicate that 39 of the microbial species analyzed are particularly important in relation to accurately predicting age.
The study also showed that our gut microbiomes change over time. While some microbes’ numbers dwindle as we age, others seem to become more abundant. Age is not the only factor that influences the prevalence of different types of bacteria in a person’s digestive system. What you eat, how you sleep, and how physically active you are are all thought to be contributing factors.
Science Magquotes Zhavoronkov as stating that the study could lay the foundation for a “microbiome aging clock” that could serve as a baseline in future research on how a person’s gut ages and how medicine, diet, and alcohol consumption affect longevity.
Living Longer, Better
Studies of our microbiome’s influence on longevity add another dimension to our understanding of how and why we age. Other avenues of study include looking at the length of telomeres, the tips of chromosomes that are believed to play an important role in the aging process, and our DNA.
The same can be said of the role microbiomes play in relation to illnesses and conditions including allergies, diabetes, some types of cancer, and psychological states such as depression. Scientists at Harvard are even developing genetically engineered ‘telephone’ bacteria that would be able to gather precise information about the state of the gut microbiome.
A positive side effect of many of the studies is that alongside dedicated microbiome data collection efforts, they add new data—the food of AI. While we are already gaining a better understanding of the gut biome, it is not a large leap of logic to predict that AI will feast on the new data and assist us in getting an even keener understanding of what is going on in our gut and what it means for our health.
Image Credit: GiroScience / Shutterstock.com Continue reading
#434559 Can AI Tell the Difference Between a ...
Scarcely a day goes by without another headline about neural networks: some new task that deep learning algorithms can excel at, approaching or even surpassing human competence. As the application of this approach to computer vision has continued to improve, with algorithms capable of specialized recognition tasks like those found in medicine, the software is getting closer to widespread commercial use—for example, in self-driving cars. Our ability to recognize patterns is a huge part of human intelligence: if this can be done faster by machines, the consequences will be profound.
Yet, as ever with algorithms, there are deep concerns about their reliability, especially when we don’t know precisely how they work. State-of-the-art neural networks will confidently—and incorrectly—classify images that look like television static or abstract art as real-world objects like school-buses or armadillos. Specific algorithms could be targeted by “adversarial examples,” where adding an imperceptible amount of noise to an image can cause an algorithm to completely mistake one object for another. Machine learning experts enjoy constructing these images to trick advanced software, but if a self-driving car could be fooled by a few stickers, it might not be so fun for the passengers.
These difficulties are hard to smooth out in large part because we don’t have a great intuition for how these neural networks “see” and “recognize” objects. The main insight analyzing a trained network itself can give us is a series of statistical weights, associating certain groups of points with certain objects: this can be very difficult to interpret.
Now, new research from UCLA, published in the journal PLOS Computational Biology, is testing neural networks to understand the limits of their vision and the differences between computer vision and human vision. Nicholas Baker, Hongjing Lu, and Philip J. Kellman of UCLA, alongside Gennady Erlikhman of the University of Nevada, tested a deep convolutional neural network called VGG-19. This is state-of-the-art technology that is already outperforming humans on standardized tests like the ImageNet Large Scale Visual Recognition Challenge.
They found that, while humans tend to classify objects based on their overall (global) shape, deep neural networks are far more sensitive to the textures of objects, including local color gradients and the distribution of points on the object. This result helps explain why neural networks in image recognition make mistakes that no human ever would—and could allow for better designs in the future.
In the first experiment, a neural network was trained to sort images into 1 of 1,000 different categories. It was then presented with silhouettes of these images: all of the local information was lost, while only the outline of the object remained. Ordinarily, the trained neural net was capable of recognizing these objects, assigning more than 90% probability to the correct classification. Studying silhouettes, this dropped to 10%. While human observers could nearly always produce correct shape labels, the neural networks appeared almost insensitive to the overall shape of the images. On average, the correct object was ranked as the 209th most likely solution by the neural network, even though the overall shapes were an exact match.
A particularly striking example arose when they tried to get the neural networks to classify glass figurines of objects they could already recognize. While you or I might find it easy to identify a glass model of an otter or a polar bear, the neural network classified them as “oxygen mask” and “can opener” respectively. By presenting glass figurines, where the texture information that neural networks relied on for classifying objects is lost, the neural network was unable to recognize the objects by shape alone. The neural network was similarly hopeless at classifying objects based on drawings of their outline.
If you got one of these right, you’re better than state-of-the-art image recognition software. Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
When the neural network was explicitly trained to recognize object silhouettes—given no information in the training data aside from the object outlines—the researchers found that slight distortions or “ripples” to the contour of the image were again enough to fool the AI, while humans paid them no mind.
The fact that neural networks seem to be insensitive to the overall shape of an object—relying instead on statistical similarities between local distributions of points—suggests a further experiment. What if you scrambled the images so that the overall shape was lost but local features were preserved? It turns out that the neural networks are far better and faster at recognizing scrambled versions of objects than outlines, even when humans struggle. Students could classify only 37% of the scrambled objects, while the neural network succeeded 83% of the time.
Humans vastly outperform machines at classifying object (a) as a bear, while the machine learning algorithm has few problems classifying the bear in figure (b). Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
“This study shows these systems get the right answer in the images they were trained on without considering shape,” Kellman said. “For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn’t seem to be in these deep learning systems at all.”
Naively, one might expect that—as the many layers of a neural network are modeled on connections between neurons in the brain and resemble the visual cortex specifically—the way computer vision operates must necessarily be similar to human vision. But this kind of research shows that, while the fundamental architecture might resemble that of the human brain, the resulting “mind” operates very differently.
Researchers can, increasingly, observe how the “neurons” in neural networks light up when exposed to stimuli and compare it to how biological systems respond to the same stimuli. Perhaps someday it might be possible to use these comparisons to understand how neural networks are “thinking” and how those responses differ from humans.
But, as yet, it takes a more experimental psychology to probe how neural networks and artificial intelligence algorithms perceive the world. The tests employed against the neural network are closer to how scientists might try to understand the senses of an animal or the developing brain of a young child rather than a piece of software.
By combining this experimental psychology with new neural network designs or error-correction techniques, it may be possible to make them even more reliable. Yet this research illustrates just how much we still don’t understand about the algorithms we’re creating and using: how they tick, how they make decisions, and how they’re different from us. As they play an ever-greater role in society, understanding the psychology of neural networks will be crucial if we want to use them wisely and effectively—and not end up missing the woods for the trees.
Image Credit: Irvan Pratama / Shutterstock.com Continue reading