Tag Archives: tell

#435632 DARPA Subterranean Challenge: Tunnel ...

The Tunnel Circuit of the DARPA Subterranean Challenge starts later this week at the NIOSH research mine just outside of Pittsburgh, Pennsylvania. From 15-22 August, 11 teams will send robots into a mine that they've never seen before, with the goal of making maps and locating items. All DARPA SubT events involve tunnels of one sort or another, but in this case, the “Tunnel Circuit” refers to mines as opposed to urban underground areas or natural caves. This month’s challenge is the first of three discrete events leading up to a huge final event in August of 2021.

While the Tunnel Circuit competition will be closed to the public, and media are only allowed access for a single day (which we'll be at, of course), DARPA has provided a substantial amount of information about what teams will be able to expect. We also have details from the SubT Integration Exercise, called STIX, which was a completely closed event that took place back in April. STIX was aimed at giving some teams (and DARPA) a chance to practice in a real tunnel environment.

For more general background on SubT, here are some articles to get you all caught up:

SubT: The Next DARPA Challenge for Robotics

Q&A with DARPA Program Manager Tim Chung

Meet The First Nine Teams

It makes sense to take a closer look at what happened at April's STIX exercise, because it is (probably) very similar to what teams will experience in the upcoming Tunnel Circuit. STIX took place at Edgar Experimental Mine in Colorado, and while no two mines are the same (and many are very, very different), there are enough similarities for STIX to have been a valuable experience for teams. Here's an overview video of the exercise from DARPA:

DARPA has also put together a much more detailed walkthrough of the STIX mine exercise, which gives you a sense of just how vast, complicated, and (frankly) challenging for robots the mine environment is:

So, that's the kind of thing that teams had to deal with back in April. Since the event was an exercise, rather than a competition, DARPA didn't really keep score, and wouldn't comment on the performance of individual teams. We've been trolling YouTube for STIX footage, though, to get a sense of how things went, and we found a few interesting videos.

Here's a nice overview from Team CERBERUS, which used drones plus an ANYmal quadruped:

Team CTU-CRAS also used drones, along with a tracked robot:

Team Robotika was brave enough to post video of a “fatal failure” experienced by its wheeled robot; the poor little bot gets rescued at about 7:00 in case you get worried:

So that was STIX. But what about the Tunnel Circuit competition this week? Here's a course preview video from DARPA:

It sort of looks like the NIOSH mine might be a bit less dusty than the Edgar mine was, but it could also be wetter and muddier. It’s hard to tell, because we’re just getting a few snapshots of what’s probably an enormous area with kilometers of tunnels that the robots will have to explore. But DARPA has promised “constrained passages, sharp turns, large drops/climbs, inclines, steps, ladders, and mud, sand, and/or water.” Combine that with the serious challenge to communications imposed by the mine itself, and robots will have to be both physically capable, and almost entirely autonomous. Which is, of course, exactly what DARPA is looking to test with this challenge.

Lastly, we had a chance to catch up with Tim Chung, Program Manager for the Subterranean Challenge at DARPA, and ask him a few brief questions about STIX and what we have to look forward to this week.

IEEE Spectrum: How did STIX go?

Tim Chung: It was a lot of fun! I think it gave a lot of the teams a great opportunity to really get a taste of what these types of real world environments look like, and also what DARPA has in store for them in the SubT Challenge. STIX I saw as an experiment—a learning experience for all the teams involved (as well as the DARPA team) so that we can continue our calibration.

What do you think teams took away from STIX, and what do you think DARPA took away from STIX?

I think the thing that teams took away was that, when DARPA hosts a challenge, we have very audacious visions for what the art of the possible is. And that's what we want—in my mind, the purpose of a DARPA Grand Challenge is to provide that inspiration of, ‘Holy cow, someone thinks we can do this!’ So I do think the teams walked away with a better understanding of what DARPA's vision is for the capabilities we're seeking in the SubT Challenge, and hopefully walked away with a better understanding of the technical, physical, even maybe mental challenges of doing this in the wild— which will all roll back into how they think about the problem, and how they develop their systems.

This was a collaborative exercise, so the DARPA field team was out there interacting with the other engineers, figuring out what their strengths and weaknesses and needs might be, and even understanding how to handle the robots themselves. That will help [strengthen] connections between these university teams and DARPA going forward. Across the board, I think that collaborative spirit is something we really wish to encourage, and something that the DARPA folks were able to take away.

What do we have to look forward to during the Tunnel Circuit?

The vision here is that the Tunnel Circuit is representative of one of the three subterranean subdomains, along with urban and cave. Characteristics of all of these three subdomains will be mashed together in an epic final course, so that teams will have to face hints of tunnel once again in that final event.

Without giving too much away, the NIOSH mine will be similar to the Edgar mine in that it's a human-made environment that supports mining operations and research. But of course, every site is different, and these differences, I think, will provide good opportunities for the teams to shine.

Again, we'll be visiting the NIOSH mine in Pennsylvania during the Tunnel Circuit and will post as much as we can from there. But if you’re an actual participant in the Subterranean Challenge, please tweet me @BotJunkie so that I can follow and help share live updates.

[ DARPA Subterranean Challenge ] Continue reading

Posted in Human Robots

#435621 ANYbotics Introduces Sleek New ANYmal C ...

Quadrupedal robots are making significant advances lately, and just in the past few months we’ve seen Boston Dynamics’ Spot hauling a truck, IIT’s HyQReal pulling a plane, MIT’s MiniCheetah doing backflips, Unitree Robotics’ Laikago towing a van, and Ghost Robotics’ Vision 60 exploring a mine. Robot makers are betting that their four-legged machines will prove useful in a variety of applications in construction, security, delivery, and even at home.

ANYbotics has been working on such applications for years, testing out their ANYmal robot in places where humans typically don’t want to go (like offshore platforms) as well as places where humans really don’t want to go (like sewers), and they have a better idea than most companies what can make quadruped robots successful.

This week, ANYbotics is announcing a completely new quadruped platform, ANYmal C, a major upgrade from the really quite research-y ANYmal B. The new quadruped has been optimized for ruggedness and reliability in industrial environments, with a streamlined body painted a color that lets you know it means business.

ANYmal C’s physical specs are pretty impressive for a production quadruped. It can move at 1 meter per second, manage 20-degree slopes and 45-degree stairs, cross 25-centimeter gaps, and squeeze through passages just 60 centimeters wide. It’s packed with cameras and 3D sensors, including a lidar for 3D mapping and simultaneous localization and mapping (SLAM). All these sensors (along with the vast volume of gait research that’s been done with ANYmal) make this one of the most reliably autonomous quadrupeds out there, with real-time motion planning and obstacle avoidance.

Image: ANYbotics

ANYmal can autonomously attach itself to a cone-shaped docking station to recharge.

ANYmal C is also one of the ruggedest legged robots in existence. The 50-kilogram robot is IP67 rated, meaning that it’s completely impervious to dust and can withstand being submerged in a meter of water for an hour. If it’s submerged for longer than that, you’re absolutely doing something wrong. The robot will run for over 2 hours on battery power, and if that’s not enough endurance, don’t worry, because ANYmal can autonomously impale itself on a weird cone-shaped docking station to recharge.

Photo: ANYbotics

ANYmal C’s sensor payload includes cameras and a lidar for 3D mapping and SLAM.

As far as what ANYmal C is designed to actually do, it’s mostly remote inspection tasks where you need to move around through a relatively complex environment, but where for whatever reason you’d be better off not sending a human. ANYmal C has a sensor payload that gives it lots of visual options, like thermal imaging, and with the ability to handle a 10-kilogram payload, the robot can be adapted to many different environments.

Over the next few months, we’re hoping to see more examples of ANYmal C being deployed to do useful stuff in real-world environments, but for now, we do have a bit more detail from ANYbotics CTO Christian Gehring.

IEEE Spectrum: Can you tell us about the development process for ANYmal C?

Christian Gehring: We tested the previous generation of ANYmal (B) in a broad range of environments over the last few years and gained a lot of insights. Based on our learnings, it became clear that we would have to re-design the robot to meet the requirements of industrial customers in terms of safety, quality, reliability, and lifetime. There were different prototype stages both for the new drives and for single robot assemblies. Apart from electrical tests, we thoroughly tested the thermal control and ingress protection of various subsystems like the depth cameras and actuators.

What can ANYmal C do that the previous version of ANYmal can’t?

ANYmal C was redesigned with a focus on performance increase regarding actuation (new drives), computational power (new hexacore Intel i7 PCs), locomotion and navigation skills, and autonomy (new depth cameras). The new robot additionally features a docking system for autonomous recharging and an inspection payload as an option. The design of ANYmal C is far more integrated than its predecessor, which increases both performance and reliability.

How much of ANYmal C’s development and design was driven by your experience with commercial or industry customers?

Tests (such as the offshore installation with TenneT) and discussions with industry customers were important to get the necessary design input in terms of performance, safety, quality, reliability, and lifetime. Most customers ask for very similar inspection tasks that can be performed with our standard inspection payload and the required software packages. Some are looking for a robot that can also solve some simple manipulation tasks like pushing a button. Overall, most use cases customers have in mind are realistic and achievable, but some are really tough for the robot, like climbing 50° stairs in hot environments of 50°C.

Can you describe how much autonomy you expect ANYmal C to have in industrial or commercial operations?

ANYmal C is primarily developed to perform autonomous routine inspections in industrial environments. This autonomy especially adds value for operations that are difficult to access, as human operation is extremely costly. The robot can naturally also be operated via a remote control and we are working on long-distance remote operation as well.

Do you expect that researchers will be interested in ANYmal C? What research applications could it be useful for?

ANYmal C has been designed to also address the needs of the research community. The robot comes with two powerful hexacore Intel i7 computers and can additionally be equipped with an NVIDIA Jetson Xavier graphics card for learning-based applications. Payload interfaces enable users to easily install and test new sensors. By joining our established ANYmal Research community, researchers get access to simulation tools and software APIs, which boosts their research in various areas like control, machine learning, and navigation.

[ ANYmal C ] Continue reading

Posted in Human Robots

#435605 All of the Winners in the DARPA ...

The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.

First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.

Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.

Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.

DARPA also awarded a bunch of “superlative awards” after SubT:

Most Accurate Artifact: Team Explorer

To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.

Down to the Wire: Team CSIRO Data61

With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.

Most Distinctive Robots: Team Robotika

Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.

Most Robots Per Person: Team Coordinated Robotics

Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.

Fan Favorite: Team NCTU

Photo: Evan Ackerman/IEEE Spectrum

The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.

DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:

The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.

DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#435462 Where Death Ends and Cyborgs Begin, With ...

Transhumanism is a growing movement but also one of the most controversial. Though there are many varying offshoots within the movement, the general core idea is the same: evolve and enhance human beings by integrating biology with technology.

We recently sat down with one of the most influential and vocal transhumanists, author and futurist Zoltan Istvan, on the latest episode of Singularity University Radio’s podcast series: The Feedback Loop, to discuss his ideas on technological implants, religion, transhumanism, and death.

Although Zoltan’s origin story is rooted deeply in his time as a reporter for National Geographic, much of his rise to prominence has been a result of his contributions to a variety of media outlets, including an appearance on the Joe Rogan podcast. Additionally, many of you may know him from his novel, The Transhumanist Wager, and his 2016 presidential campaign, where he drove around the United States in a bus that had been remodeled into the shape of a coffin.

Although Zoltan had no illusions about actually winning the presidency, he had hoped that the “immortality bus” and his campaign might help inject more science, technology, and longevity research into the political discourse, or at the very least spark a more serious conversation around the future of our species.

Only time will tell if his efforts paid off, but in the meantime, you can hear Zoltan discuss religion, transhumanism, implants, the existential motivation of death, and the need for new governmental policies in Episode 7 of The Feedback Loop. To listen in each week you can find us on your favorite podcasting platforms, such as Spotify, Apple, or Google, and you can find links to other podcasting platforms and Singularity Hub’s text-to-speech articles here. You can also find our past episodes with other thought leaders like Douglas Rushkoff and Annaka Harris below.

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots

#435423 Moving Beyond Mind-Controlled Limbs to ...

Brain-machine interface enthusiasts often gush about “closing the loop.” It’s for good reason. On the implant level, it means engineering smarter probes that only activate when they detect faulty electrical signals in brain circuits. Elon Musk’s Neuralink—among other players—are readily pursuing these bi-directional implants that both measure and zap the brain.

But to scientists laboring to restore functionality to paralyzed patients or amputees, “closing the loop” has broader connotations. Building smart mind-controlled robotic limbs isn’t enough; the next frontier is restoring sensation in offline body parts. To truly meld biology with machine, the robotic appendage has to “feel one” with the body.

This month, two studies from Science Robotics describe complementary ways forward. In one, scientists from the University of Utah paired a state-of-the-art robotic arm—the DEKA LUKE—with electrically stimulating remaining nerves above the attachment point. Using artificial zaps to mimic the skin’s natural response patterns to touch, the team dramatically increased the patient’s ability to identify objects. Without much training, he could easily discriminate between the small and large and the soft and hard while blindfolded and wearing headphones.

In another, a team based at the National University of Singapore took inspiration from our largest organ, the skin. Mimicking the neural architecture of biological skin, the engineered “electronic skin” not only senses temperature, pressure, and humidity, but continues to function even when scraped or otherwise damaged. Thanks to artificial nerves that transmit signals far faster than our biological ones, the flexible e-skin shoots electrical data 1,000 times quicker than human nerves.

Together, the studies marry neuroscience and robotics. Representing the latest push towards closing the loop, they show that integrating biological sensibilities with robotic efficiency isn’t impossible (super-human touch, anyone?). But more immediately—and more importantly—they’re beacons of hope for patients who hope to regain their sense of touch.

For one of the participants, a late middle-aged man with speckled white hair who lost his forearm 13 years ago, superpowers, cyborgs, or razzle-dazzle brain implants are the last thing on his mind. After a barrage of emotionally-neutral scientific tests, he grasped his wife’s hand and felt her warmth for the first time in over a decade. His face lit up in a blinding smile.

That’s what scientists are working towards.

Biomimetic Feedback
The human skin is a marvelous thing. Not only does it rapidly detect a multitude of sensations—pressure, temperature, itch, pain, humidity—its wiring “binds” disparate signals together into a sensory fingerprint that helps the brain identify what it’s feeling at any moment. Thanks to over 45 miles of nerves that connect the skin, muscles, and brain, you can pick up a half-full coffee cup, knowing that it’s hot and sloshing, while staring at your computer screen. Unfortunately, this complexity is also why restoring sensation is so hard.

The sensory electrode array implanted in the participant’s arm. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019)..
However, complex neural patterns can also be a source of inspiration. Previous cyborg arms are often paired with so-called “standard” sensory algorithms to induce a basic sense of touch in the missing limb. Here, electrodes zap residual nerves with intensities proportional to the contact force: the harder the grip, the stronger the electrical feedback. Although seemingly logical, that’s not how our skin works. Every time the skin touches or leaves an object, its nerves shoot strong bursts of activity to the brain; while in full contact, the signal is much lower. The resulting electrical strength curve resembles a “U.”

The LUKE hand. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019).
The team decided to directly compare standard algorithms with one that better mimics the skin’s natural response. They fitted a volunteer with a robotic LUKE arm and implanted an array of electrodes into his forearm—right above the amputation—to stimulate the remaining nerves. When the team activated different combinations of electrodes, the man reported sensations of vibration, pressure, tapping, or a sort of “tightening” in his missing hand. Some combinations of zaps also made him feel as if he were moving the robotic arm’s joints.

In all, the team was able to carefully map nearly 120 sensations to different locations on the phantom hand, which they then overlapped with contact sensors embedded in the LUKE arm. For example, when the patient touched something with his robotic index finger, the relevant electrodes sent signals that made him feel as if he were brushing something with his own missing index fingertip.

Standard sensory feedback already helped: even with simple electrical stimulation, the man could tell apart size (golf versus lacrosse ball) and texture (foam versus plastic) while blindfolded and wearing noise-canceling headphones. But when the team implemented two types of neuromimetic feedback—electrical zaps that resembled the skin’s natural response—his performance dramatically improved. He was able to identify objects much faster and more accurately under their guidance. Outside the lab, he also found it easier to cook, feed, and dress himself. He could even text on his phone and complete routine chores that were previously too difficult, such as stuffing an insert into a pillowcase, hammering a nail, or eating hard-to-grab foods like eggs and grapes.

The study shows that the brain more readily accepts biologically-inspired electrical patterns, making it a relatively easy—but enormously powerful—upgrade that seamlessly integrates the robotic arms with the host. “The functional and emotional benefits…are likely to be further enhanced with long-term use, and efforts are underway to develop a portable take-home system,” the team said.

E-Skin Revolution: Asynchronous Coded Electronic Skin (ACES)
Flexible electronic skins also aren’t new, but the second team presented an upgrade in both speed and durability while retaining multiplexed sensory capabilities.

Starting from a combination of rubber, plastic, and silicon, the team embedded over 200 sensors onto the e-skin, each capable of discerning contact, pressure, temperature, and humidity. They then looked to the skin’s nervous system for inspiration. Our skin is embedded with a dense array of nerve endings that individually transmit different types of sensations, which are integrated inside hubs called ganglia. Compared to having every single nerve ending directly ping data to the brain, this “gather, process, and transmit” architecture rapidly speeds things up.

The team tapped into this biological architecture. Rather than pairing each sensor with a dedicated receiver, ACES sends all sensory data to a single receiver—an artificial ganglion. This setup lets the e-skin’s wiring work as a whole system, as opposed to individual electrodes. Every sensor transmits its data using a characteristic pulse, which allows it to be uniquely identified by the receiver.

The gains were immediate. First was speed. Normally, sensory data from multiple individual electrodes need to be periodically combined into a map of pressure points. Here, data from thousands of distributed sensors can independently go to a single receiver for further processing, massively increasing efficiency—the new e-skin’s transmission rate is roughly 1,000 times faster than that of human skin.

Second was redundancy. Because data from individual sensors are aggregated, the system still functioned even when any individual receptors are damaged, making it far more resilient than previous attempts. Finally, the setup could easily scale up. Although the team only tested the idea with 240 sensors, theoretically the system should work with up to 10,000.

The team is now exploring ways to combine their invention with other material layers to make it water-resistant and self-repairable. As you might’ve guessed, an immediate application is to give robots something similar to complex touch. A sensory upgrade not only lets robots more easily manipulate tools, doorknobs, and other objects in hectic real-world environments, it could also make it easier for machines to work collaboratively with humans in the future (hey Wall-E, care to pass the salt?).

Dexterous robots aside, the team also envisions engineering better prosthetics. When coated onto cyborg limbs, for example, ACES may give them a better sense of touch that begins to rival the human skin—or perhaps even exceed it.

Regardless, efforts that adapt the functionality of the human nervous system to machines are finally paying off, and more are sure to come. Neuromimetic ideas may very well be the link that finally closes the loop.

Image Credit: Dan Hixson/University of Utah College of Engineering.. Continue reading

Posted in Human Robots