Tag Archives: tech
#436119 How 3D Printing, Vertical Farming, and ...
Food. What we eat, and how we grow it, will be fundamentally transformed in the next decade.
Already, indoor farming is projected to be a US$40.25 billion industry by 2022, with a compound annual growth rate of 9.65 percent. Meanwhile, the food 3D printing industry is expected to grow at an even higher rate, averaging 50 percent annual growth.
And converging exponential technologies—from materials science to AI-driven digital agriculture—are not slowing down. Today’s breakthroughs will soon allow our planet to boost its food production by nearly 70 percent, using a fraction of the real estate and resources, to feed 9 billion by mid-century.
What you consume, how it was grown, and how it will end up in your stomach will all ride the wave of converging exponentials, revolutionizing the most basic of human needs.
Printing Food
3D printing has already had a profound impact on the manufacturing sector. We are now able to print in hundreds of different materials, making anything from toys to houses to organs. However, we are finally seeing the emergence of 3D printers that can print food itself.
Redefine Meat, an Israeli startup, wants to tackle industrial meat production using 3D printers that can generate meat, no animals required. The printer takes in fat, water, and three different plant protein sources, using these ingredients to print a meat fiber matrix with trapped fat and water, thus mimicking the texture and flavor of real meat.
Slated for release in 2020 at a cost of $100,000, their machines are rapidly demonetizing and will begin by targeting clients in industrial-scale meat production.
Anrich3D aims to take this process a step further, 3D printing meals that are customized to your medical records, heath data from your smart wearables, and patterns detected by your sleep trackers. The company plans to use multiple extruders for multi-material printing, allowing them to dispense each ingredient precisely for nutritionally optimized meals. Currently in an R&D phase at the Nanyang Technological University in Singapore, the company hopes to have its first taste tests in 2020.
These are only a few of the many 3D food printing startups springing into existence. The benefits from such innovations are boundless.
Not only will food 3D printing grant consumers control over the ingredients and mixtures they consume, but it is already beginning to enable new innovations in flavor itself, democratizing far healthier meal options in newly customizable cuisine categories.
Vertical Farming
Vertical farming, whereby food is grown in vertical stacks (in skyscrapers and buildings rather than outside in fields), marks a classic case of converging exponential technologies. Over just the past decade, the technology has surged from a handful of early-stage pilots to a full-grown industry.
Today, the average American meal travels 1,500-2,500 miles to get to your plate. As summed up by Worldwatch Institute researcher Brian Halweil, “We are spending far more energy to get food to the table than the energy we get from eating the food.” Additionally, the longer foods are out of the soil, the less nutritious they become, losing on average 45 percent of their nutrition before being consumed.
Yet beyond cutting down on time and transportation losses, vertical farming eliminates a whole host of issues in food production. Relying on hydroponics and aeroponics, vertical farms allows us to grow crops with 90 percent less water than traditional agriculture—which is critical for our increasingly thirsty planet.
Currently, the largest player around is Bay Area-based Plenty Inc. With over $200 million in funding from Softbank, Plenty is taking a smart tech approach to indoor agriculture. Plants grow on 20-foot-high towers, monitored by tens of thousands of cameras and sensors, optimized by big data and machine learning.
This allows the company to pack 40 plants in the space previously occupied by 1. The process also produces yields 350 times greater than outdoor farmland, using less than 1 percent as much water.
And rather than bespoke veggies for the wealthy few, Plenty’s processes allow them to knock 20-35 percent off the costs of traditional grocery stores. To date, Plenty has their home base in South San Francisco, a 100,000 square-foot farm in Kent, Washington, an indoor farm in the United Arab Emirates, and recently started construction on over 300 farms in China.
Another major player is New Jersey-based Aerofarms, which can now grow two million pounds of leafy greens without sunlight or soil.
To do this, Aerofarms leverages AI-controlled LEDs to provide optimized wavelengths of light for each plant. Using aeroponics, the company delivers nutrients by misting them directly onto the plants’ roots—no soil required. Rather, plants are suspended in a growth mesh fabric made from recycled water bottles. And here too, sensors, cameras, and machine learning govern the entire process.
While 50-80 percent of the cost of vertical farming is human labor, autonomous robotics promises to solve that problem. Enter contenders like Iron Ox, a firm that has developed the Angus robot, capable of moving around plant-growing containers.
The writing is on the wall, and traditional agriculture is fast being turned on its head.
Materials Science
In an era where materials science, nanotechnology, and biotechnology are rapidly becoming the same field of study, key advances are enabling us to create healthier, more nutritious, more efficient, and longer-lasting food.
For starters, we are now able to boost the photosynthetic abilities of plants. Using novel techniques to improve a micro-step in the photosynthesis process chain, researchers at UCLA were able to boost tobacco crop yield by 14-20 percent. Meanwhile, the RIPE Project, backed by Bill Gates and run out of the University of Illinois, has matched and improved those numbers.
And to top things off, The University of Essex was even able to improve tobacco yield by 27-47 percent by increasing the levels of protein involved in photo-respiration.
In yet another win for food-related materials science, Santa Barbara-based Apeel Sciences is further tackling the vexing challenge of food waste. Now approaching commercialization, Apeel uses lipids and glycerolipids found in the peels, seeds, and pulps of all fruits and vegetables to create “cutin”—the fatty substance that composes the skin of fruits and prevents them from rapidly spoiling by trapping moisture.
By then spraying fruits with this generated substance, Apeel can preserve foods 60 percent longer using an odorless, tasteless, colorless organic substance.
And stores across the US are already using this method. By leveraging our advancing knowledge of plants and chemistry, materials science is allowing us to produce more food with far longer-lasting freshness and more nutritious value than ever before.
Convergence
With advances in 3D printing, vertical farming, and materials sciences, we can now make food smarter, more productive, and far more resilient.
By the end of the next decade, you should be able to 3D print a fusion cuisine dish from the comfort of your home, using ingredients harvested from vertical farms, with nutritional value optimized by AI and materials science. However, even this picture doesn’t account for all the rapid changes underway in the food industry.
Join me next week for Part 2 of the Future of Food for a discussion on how food production will be transformed, quite literally, from the bottom up.
Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.
Image Credit: Vanessa Bates Ramirez Continue reading
#436044 Want a Really Hard Machine Learning ...
What’s the world’s hardest machine learning problem? Autonomous vehicles? Robots that can walk? Cancer detection?
Nope, says Julian Sanchez. It’s agriculture.
Sanchez might be a little biased. He is the director of precision agriculture for John Deere, and is in charge of adding intelligence to traditional farm vehicles. But he does have a little perspective, having spent time working on software for both medical devices and air traffic control systems.
I met with Sanchez and Alexey Rostapshov, head of digital innovation at John Deere Labs, at the organization’s San Francisco offices last month. Labs launched in 2017 to take advantage of the area’s tech expertise, both to apply machine learning to in-house agricultural problems and to work with partners to build technologies that play nicely with Deere’s big green machines. Deere’s neighbors in San Francisco’s tech-heavy South of Market are LinkedIn, Salesforce, and Planet Labs, which puts it in a good position for recruiting.
“We’ve literally had folks knock on the door and say, ‘What are you doing here?’” says Rostapshov, and some return to drop off resumes.
Here’s why Sanchez believes agriculture is such a big challenge for artificial intelligence.
“It’s not just about driving tractors around,” he says, although autonomous driving technologies are part of the mix. (John Deere is doing a lot of work with precision GPS to improve autonomous driving, for example, and allow tractors to plan their own routes around fields.)
But more complex than the driving problem, says Sanchez, are the classification problems.
Corn: A Classic Classification Problem
Photo: Tekla Perry
One key effort, Sanchez says, are AI systems “that allow me to tell whether grain being harvested is good quality or low quality and to make automatic adjustment systems for the harvester.” The company is already selling an early version of this image analysis technology. But the many differences between grain types, and grains grown under different conditions, make this task a tough one for machine learning.
“Take corn,” Sanchez says. “Let’s say we are building a deep learning algorithm to detect this corn. And we take lots of pictures of kernels to give it. Say we pick those kernels in central Illinois. But, one mile over, the farmer planted a slightly different hybrid which has slightly different coloration of yellow. Meanwhile, this other farm harvested three days later in a field five miles away; it’s the same hybrid, but it also looks different.
“It’s an overwhelming classification challenge, and that’s just for corn. But you are not only doing it for corn, you have to add 20 more varieties of grain to the mix; and some, like canola, are almost microscopic.”
Even the ground conditions vary dramatically—far more than road conditions, Sanchez points out.
“Let’s say we are building a deep learning algorithm to detect how much residue is left on the soil after a harvest, including stubble and some chaff. Let’s drive 2,000 acres of fields in the Midwest looking at residue. That’s great, but I guarantee that if you go drive those the next year, it will look significantly different.
“Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen. And in agriculture, you always feel that there is a set of conditions that you haven’t yet classified.”
A Flood of Big Data
The scale of the data is also daunting, Rostapshov points out. “We are one of the largest users of cloud computing services in the world,” he says. “We are gathering 5 to 15 million measurements per second from 130,000 connected machines globally. We have over 150 million acres in our databases, using petabytes and petabytes [of storage]. We process more data than Twitter does.”
Much of this information is so-called dirty data, that is, it doesn’t share the same format or structure, because it’s coming not only from a wide variety of John Deere machines, but also includes data from some 100 other companies that have access to the platform, including weather information, aerial imagery, and soil analyses.
As a result, says Sanchez, Deere has had to make “tremendous investments in back-end data cleanup.”
Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen.”
—Julian Sanchez, John Deere
“We have gotten progressively more skilled at that problem,” he says. “We started simply by cleaning up our own data. You’d think it would be nice and neat, since it’s coming from our own machines, but there is a wide variety of different models and different years. Then we started geospatially tagging the agronomic data—the information about where you are applying herbicides and fertilizer and the like—coming in from our vehicles. When we started bringing in other data, from drones, say, we were already good at cleaning it up.”
John Deere’s Hiring Pitch
Hard problems can be a good thing to have for a company looking to hire machine learning engineers.
“Our opening line to potential recruits,” Sanchez says, “is ‘This stuff matters.’ Then, if we get a chance to talk to them more, we follow up with ‘Not only does this stuff matter, but the problems are really hard and interesting.’ When we explain the variability in farming and how we have to apply all the latest tools to these problems, we get their attention.”
Software engineers “know that feeding a growing population is a massive problem and are excited about the prospect of making a difference,” Rostapshov says.
Only 20 engineers work in the San Francisco labs right now, and that’s on a busy day—some of the researchers spend part of their time at Blue River Technology, a startup based in Sunnyvale that was acquired by Deere in 2017. About half of the researchers are focusing on AI. The Lab is in the process of doubling its office space (no word on staffing plans for that expansion yet).
“We are one of the largest users of cloud computing services in the world.”
—Alexey Rostapshov, John Deere Labs
Company-wide, Deere has thousands of software engineers, with many using AI and machine learning tools in their work, and about the same number of mechanical and electrical engineers, Sanchez reports. “If you look at our hiring 10 years ago,” he says, “it was heavily weighted to mechanical engineers. But if you look at those numbers now, it is by a large majority [engineers working] in the software space. We still need mechanical engineers—we do build green machines—but if you go by our footprint of tech talent, it is pretty safe to call John Deere a software company. And if you follow the key conversations that are happening in the company right now, 95 percent of them are software-related.”
For now, these software engineers are focused on developing technologies that allow farmers to “do more with less,” Sanchez says. Meaning, to get more and better crops from less fuel, less seed, less fertilizer, less pesticide, and fewer workers, and putting together building blocks that, he says, could eventually lead to fully autonomous farm vehicles. The data Deere collects today, for the most part, stays in silos (the virtual kind), with AI algorithms that analyze specific sets of data to provide guidance to individual farmers. At some point, however, with tools to anonymize data and buy-in from farmers, aggregating data could provide some powerful insights.
“We are not asking farmers for that yet,” Sanchez says. “We are not doing aggregation to look for patterns. We are focused on offering technology that allows an individual farmer to use less, on positioning ourselves to be in a neutral spot. We are not about selling you more seed or more fertilizer. So we are building up a good trust level. In the long term, we can have conversations about doing more with deep learning.” Continue reading
#435824 A Q&A with Cruise’s head of AI, ...
In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.
Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.
Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.
Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.
IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?
Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.
“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”
I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.
In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.
There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.
IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?
Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.
Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.
I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.
The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.
Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.
IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?
Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.
And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”
IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?
Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.
“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”
Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.
It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.
I can see how I can spend a lifetime career trying to solve this problem.
IEEE Spectrum: Why are you doing most of your development in San Francisco?
Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.
“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”
[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.
A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading
#435804 New AI Systems Are Here to Personalize ...
The narratives about automation and its impact on jobs go from urgent to hopeful and everything in between. Regardless where you land, it’s hard to argue against the idea that technologies like AI and robotics will change our economy and the nature of work in the coming years.
A recent World Economic Forum report noted that some estimates show automation could displace 75 million jobs by 2022, while at the same time creating 133 million new roles. While these estimates predict a net positive for the number of new jobs in the coming decade, displaced workers will need to learn new skills to adapt to the changes. If employees can’t be retrained quickly for jobs in the changing economy, society is likely to face some degree of turmoil.
According to Bryan Talebi, CEO and founder of AI education startup Ahura AI, the same technologies erasing and creating jobs can help workers bridge the gap between the two.
Ahura is developing a product to capture biometric data from adult learners who are using computers to complete online education programs. The goal is to feed this data to an AI system that can modify and adapt their program to optimize for the most effective teaching method.
While the prospect of a computer recording and scrutinizing a learner’s behavioral data will surely generate unease across a society growing more aware and uncomfortable with digital surveillance, some people may look past such discomfort if they experience improved learning outcomes. Users of the system would, in theory, have their own personalized instruction shaped specifically for their unique learning style.
And according to Talebi, their systems are showing some promise.
“Based on our early tests, our technology allows people to learn three to five times faster than traditional education,” Talebi told me.
Currently, Ahura’s system uses the video camera and microphone that come standard on the laptops, tablets, and mobile devices most students are using for their learning programs.
With the computer’s camera Ahura can capture facial movements and micro expressions, measure eye movements, and track fidget score (a measure of how much a student moves while learning). The microphone tracks voice sentiment, and the AI leverages natural language processing to review the learner’s word usage.
From this collection of data Ahura can, according to Talebi, identify the optimal way to deliver content to each individual.
For some users that might mean a video tutorial is the best style of learning, while others may benefit more from some form of experiential or text-based delivery.
“The goal is to alter the format of the content in real time to optimize for attention and retention of the information,” said Talebi. One of Ahura’s main goals is to reduce the frequency with which students switch from their learning program to distractions like social media.
“We can now predict with a 60 percent confidence interval ten seconds before someone switches over to Facebook or Instagram. There’s a lot of work to do to get that up to a 95 percent level, so I don’t want to overstate things, but that’s a promising indication that we can work to cut down on the amount of context-switching by our students,” Talebi said.
Talebi repeatedly mentioned his ambition to leverage the same design principles used by Facebook, Twitter, and others to increase the time users spend on those platforms, but instead use them to design more compelling and even addictive education programs that can compete for attention with social media.
But the notion that Ahura’s system could one day be used to create compelling or addictive education necessarily presses against a set of justified fears surrounding data privacy. Growing anxiety surrounding the potential to misuse user data for social manipulation is widespread.
“Of course there is a real danger, especially because we are collecting so much data about our users which is specifically connected to how they consume content. And because we are looking so closely at the ways people interact with content, it’s incredibly important that this technology never be used for propaganda or to sell things to people,” Talebi tried to assure me.
Unsurprisingly (and worrying), using this AI system to sell products to people is exactly where some investors’ ambitions immediately turn once they learn about the company’s capabilities, according to Talebi. During our discussion Talebi regularly cited the now infamous example of Cambridge Analytica, the political consulting firm hired by the Trump campaign to run a psychographically targeted persuasion campaign on the US population during the most recent presidential election.
“It’s important that we don’t use this technology in those ways. We’re aware that things can go sideways, so we’re hoping to put up guardrails to ensure our system is helping and not harming society,” Talebi said.
Talebi will surely need to take real action on such a claim, but says the company is in the process of identifying a structure for an ethics review board—one that carries significant influence with similar voting authority as the executive team and the regular board.
“Our goal is to build an ethics review board that has teeth, is diverse in both gender and background but also in thought and belief structures. The idea is to have our ethics review panel ensure we’re building things ethically,” he said.
Data privacy appears to be an important issue for Talebi, who occasionally referenced a major competitor in the space based in China. According to a recent article from MIT Tech Review outlining the astonishing growth of AI-powered education platforms in China, data privacy concerns may be less severe there than in the West.
Ahura is currently developing upgrades to an early alpha-stage prototype, but is already capturing data from students from at least one Ivy League school and a variety of other places. Their next step is to roll out a working beta version to over 200,000 users as part of a partnership with an unnamed corporate client who will be measuring the platform’s efficacy against a control group.
Going forward, Ahura hopes to add to its suite of biometric data capture by including things like pupil dilation and facial flushing, heart rate, sleep patterns, or whatever else may give their system an edge in improving learning outcomes.
As information technologies increasingly automate work, it’s likely we’ll also see rapid changes to our labor systems. It’s also looking increasingly likely that those same technologies will be used to improve our ability to give people the right skills when they need them. It may be one way to address the challenges automation is sure to bring.
Image Credit: Gerd Altmann / Pixabay Continue reading