Tag Archives: TAKE

#431155 What It Will Take for Quantum Computers ...

Quantum computers could give the machine learning algorithms at the heart of modern artificial intelligence a dramatic speed up, but how far off are we? An international group of researchers has outlined the barriers that still need to be overcome.
This year has seen a surge of interest in quantum computing, driven in part by Google’s announcement that it will demonstrate “quantum supremacy” by the end of 2017. That means solving a problem beyond the capabilities of normal computers, which the company predicts will take 49 qubits—the quantum computing equivalent of bits.
As impressive as such a feat would be, the demonstration is likely to be on an esoteric problem that stacks the odds heavily in the quantum processor’s favor, and getting quantum computers to carry out practically useful calculations will take a lot more work.
But these devices hold great promise for solving problems in fields as diverse as cryptography or weather forecasting. One application people are particularly excited about is whether they could be used to supercharge the machine learning algorithms already transforming the modern world.
The potential is summarized in a recent review paper in the journal Nature written by a group of experts from the emerging field of quantum machine learning.
“Classical machine learning methods such as deep neural networks frequently have the feature that they can both recognize statistical patterns in data and produce data that possess the same statistical patterns: they recognize the patterns that they produce,” they write.
“This observation suggests the following hope. If small quantum information processors can produce statistical patterns that are computationally difficult for a classical computer to produce, then perhaps they can also recognize patterns that are equally difficult to recognize classically.”
Because of the way quantum computers work—taking advantage of strange quantum mechanical effects like entanglement and superposition—algorithms running on them should in principle be able to solve problems much faster than the best known classical algorithms, a phenomenon known as quantum speedup.
Designing these algorithms is tricky work, but the authors of the review note that there has been significant progress in recent years. They highlight multiple quantum algorithms exhibiting quantum speedup that could act as subroutines, or building blocks, for quantum machine learning programs.
We still don’t have the hardware to implement these algorithms, but according to the researchers the challenge is a technical one and clear paths to overcoming them exist. More challenging, they say, are four fundamental conceptual problems that could limit the applicability of quantum machine learning.
The first two are the input and output problems. Quantum computers, unsurprisingly, deal with quantum data, but the majority of the problems humans want to solve relate to the classical world. Translating significant amounts of classical data into the quantum systems can take so much time it can cancel out the benefits of the faster processing speeds, and the same is true of reading out the solution at the end.
The input problem could be mitigated to some extent by the development of quantum random access memory (qRAM)—the equivalent to RAM in a conventional computer used to provide the machine with quick access to its working memory. A qRAM can be configured to store classical data but allow the quantum computers to access all that information simultaneously as a superposition, which is required for a variety of quantum algorithms. But the authors note this is still a considerable engineering challenge and may not be sustainable for big data problems.
Closely related to the input/output problem is the costing problem. At present, the authors say very little is known about how many gates—or operations—a quantum machine learning algorithm will require to solve a given problem when operated on real-world devices. It’s expected that on highly complex problems they will offer considerable improvements over classical computers, but it’s not clear how big problems have to be before this becomes apparent.
Finally, whether or when these advantages kick in may be hard to prove, something the authors call the benchmarking problem. Claiming that a quantum algorithm can outperform any classical machine learning approach requires extensive testing against these other techniques that may not be feasible.
They suggest that this could be sidestepped by lowering the standards quantum machine learning algorithms are currently held to. This makes sense, as it doesn’t really matter whether an algorithm is intrinsically faster than all possible classical ones, as long as it’s faster than all the existing ones.
Another way of avoiding some of these problems is to apply these techniques directly to quantum data, the actual states generated by quantum systems and processes. The authors say this is probably the most promising near-term application for quantum machine learning and has the added benefit that any insights can be fed back into the design of better hardware.
“This would enable a virtuous cycle of innovation similar to that which occurred in classical computing, wherein each generation of processors is then leveraged to design the next-generation processors,” they conclude.
Image Credit: archy13 / Shutterstock.com Continue reading

Posted in Human Robots

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots

#431081 How the Intelligent Home of the Future ...

As Dorothy famously said in The Wizard of Oz, there’s no place like home. Home is where we go to rest and recharge. It’s familiar, comfortable, and our own. We take care of our homes by cleaning and maintaining them, and fixing things that break or go wrong.
What if our homes, on top of giving us shelter, could also take care of us in return?
According to Chris Arkenberg, this could be the case in the not-so-distant future. As part of Singularity University’s Experts On Air series, Arkenberg gave a talk called “How the Intelligent Home of The Future Will Care For You.”
Arkenberg is a research and strategy lead at Orange Silicon Valley, and was previously a research fellow at the Deloitte Center for the Edge and a visiting researcher at the Institute for the Future.
Arkenberg told the audience that there’s an evolution going on: homes are going from being smart to being connected, and will ultimately become intelligent.
Market Trends
Intelligent home technologies are just now budding, but broader trends point to huge potential for their growth. We as consumers already expect continuous connectivity wherever we go—what do you mean my phone won’t get reception in the middle of Yosemite? What do you mean the smart TV is down and I can’t stream Game of Thrones?
As connectivity has evolved from a privilege to a basic expectation, Arkenberg said, we’re also starting to have a better sense of what it means to give up our data in exchange for services and conveniences. It’s so easy to click a few buttons on Amazon and have stuff show up at your front door a few days later—never mind that data about your purchases gets recorded and aggregated.
“Right now we have single devices that are connected,” Arkenberg said. “Companies are still trying to show what the true value is and how durable it is beyond the hype.”

Connectivity is the basis of an intelligent home. To take a dumb object and make it smart, you get it online. Belkin’s Wemo, for example, lets users control lights and appliances wirelessly and remotely, and can be paired with Amazon Echo or Google Home for voice-activated control.
Speaking of voice-activated control, Arkenberg pointed out that physical interfaces are evolving, too, to the point that we’re actually getting rid of interfaces entirely, or transitioning to ‘soft’ interfaces like voice or gesture.
Drivers of change
Consumers are open to smart home tech and companies are working to provide it. But what are the drivers making this tech practical and affordable? Arkenberg said there are three big ones:
Computation: Computers have gotten exponentially more powerful over the past few decades. If it wasn’t for processors that could handle massive quantities of information, nothing resembling an Echo or Alexa would even be possible. Artificial intelligence and machine learning are powering these devices, and they hinge on computing power too.
Sensors: “There are more things connected now than there are people on the planet,” Arkenberg said. Market research firm Gartner estimates there are 8.4 billion connected things currently in use. Wherever digital can replace hardware, it’s doing so. Cheaper sensors mean we can connect more things, which can then connect to each other.
Data: “Data is the new oil,” Arkenberg said. “The top companies on the planet are all data-driven giants. If data is your business, though, then you need to keep finding new ways to get more and more data.” Home assistants are essentially data collection systems that sit in your living room and collect data about your life. That data in turn sets up the potential of machine learning.
Colonizing the Living Room
Alexa and Echo can turn lights on and off, and Nest can help you be energy-efficient. But beyond these, what does an intelligent home really look like?
Arkenberg’s vision of an intelligent home uses sensing, data, connectivity, and modeling to manage resource efficiency, security, productivity, and wellness.
Autonomous vehicles provide an interesting comparison: they’re surrounded by sensors that are constantly mapping the world to build dynamic models to understand the change around itself, and thereby predict things. Might we want this to become a model for our homes, too? By making them smart and connecting them, Arkenberg said, they’d become “more biological.”
There are already several products on the market that fit this description. RainMachine uses weather forecasts to adjust home landscape watering schedules. Neurio monitors energy usage, identifies areas where waste is happening, and makes recommendations for improvement.
These are small steps in connecting our homes with knowledge systems and giving them the ability to understand and act on that knowledge.
He sees the homes of the future being equipped with digital ears (in the form of home assistants, sensors, and monitoring devices) and digital eyes (in the form of facial recognition technology and machine vision to recognize who’s in the home). “These systems are increasingly able to interrogate emotions and understand how people are feeling,” he said. “When you push more of this active intelligence into things, the need for us to directly interface with them becomes less relevant.”
Could our homes use these same tools to benefit our health and wellness? FREDsense uses bacteria to create electrochemical sensors that can be applied to home water systems to detect contaminants. If that’s not personal enough for you, get a load of this: ClinicAI can be installed in your toilet bowl to monitor and evaluate your biowaste. What’s the point, you ask? Early detection of colon cancer and other diseases.
What if one day, your toilet’s biowaste analysis system could link up with your fridge, so that when you opened it it would tell you what to eat, and how much, and at what time of day?
Roadblocks to intelligence
“The connected and intelligent home is still a young category trying to establish value, but the technological requirements are now in place,” Arkenberg said. We’re already used to living in a world of ubiquitous computation and connectivity, and we have entrained expectations about things being connected. For the intelligent home to become a widespread reality, its value needs to be established and its challenges overcome.
One of the biggest challenges will be getting used to the idea of continuous surveillance. We’ll get convenience and functionality if we give up our data, but how far are we willing to go? Establishing security and trust is going to be a big challenge moving forward,” Arkenberg said.
There’s also cost and reliability, interoperability and fragmentation of devices, or conversely, what Arkenberg called ‘platform lock-on,’ where you’d end up relying on only one provider’s system and be unable to integrate devices from other brands.
Ultimately, Arkenberg sees homes being able to learn about us, manage our scheduling and transit, watch our moods and our preferences, and optimize our resource footprint while predicting and anticipating change.
“This is the really fascinating provocation of the intelligent home,” Arkenberg said. “And I think we’re going to start to see this play out over the next few years.”
Sounds like a home Dorothy wouldn’t recognize, in Kansas or anywhere else.
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots

#431078 This Year’s Awesome Robot Stories From ...

Each week we scour the web for great articles and fascinating advances across our core topics, from AI to biotech and the brain. But robots have a special place in our hearts. This week, we took a look back at 2017 so far and unearthed a few favorite robots for your reading and viewing pleasure.
Tarzan the Swinging Robot Could Be the Future of FarmingMariella Moon | Engadget“Tarzan will be able to swing over crops using its 3D-printed claws and parallel guy-wires stretched over fields. It will then take measurements and pictures of each plant with its built-in camera while suspended…While it may take some time to achieve that goal, the researchers plan to start testing the robot soon.”
Grasping Robots Compete to Rule Amazon’s Warehouses Tom Simonite | Wired“Robots able to help with so-called picking tasks would boost Amazon’s efficiency—and make it much less reliant on human workers. It’s why the company has invited a motley crew of mechanical arms, grippers, suction cups—and their human handlers—to Nagoya, Japan, this week to show off their manipulation skills.”
Robots Learn to Speak Body LanguageAlyssa Pagano | IEEE Spectrum“One notable feature of the OpenPose system is that it can track not only a person’s head, torso, and limbs but also individual fingers. To do that, the researchers used CMU’s Panoptic Studio, a dome lined with 500 cameras, where they captured body poses at a variety of angles and then used those images to build a data set.”
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
How This Japanese Robotics Master Is Building Better, More Human AndroidsHarry McCracken | Fast Company“On the tech side, making a robot look and behave like a person involves everything from electronics to the silicone Ishiguro’s team uses to simulate skin. ‘We have a technology to precisely control pneumatic actuators,’ he says, noting, as an example of what they need to re-create, that ‘the human shoulder has four degrees of freedom.’”
Stock Media provided by Besjunior / Pond5 Continue reading

Posted in Human Robots

#431058 How to Make Your First Chatbot With the ...

You’re probably wondering what Game of Thrones has to do with chatbots and artificial intelligence. Before I explain this weird connection, I need to warn you that this article may contain some serious spoilers. Continue with your reading only if you are a passionate GoT follower, who watches new episodes immediately after they come out.
Why are chatbots so important anyway?
According to the study “When Will AI Exceed Human Performance?,” researchers believe there is a 50% chance artificial intelligence could take over all human jobs by around the year 2060. This technology has already replaced dozens of customer service and sales positions and helped businesses make substantial savings.
Apart from the obvious business advantages, chatbot creation can be fun. You can create an artificial personality with a strong attitude and a unique set of traits and flaws. It’s like creating a new character for your favorite TV show. That’s why I decided to explain the most important elements of the chatbot creation process by using the TV characters we all know and love (or hate).
Why Game of Thrones?
Game of Thrones is the most popular TV show in the world. More than 10 million viewers watched the seventh season premiere, and you have probably seen internet users fanatically discussing the series’ characters, storyline, and possible endings.
Apart from writing about chatbots, I’m also a GoT fanatic, and I will base this chatbot on one of the characters from my favorite series. But before you find out the name of my bot, you should read a few lines about incredible free tools that allow us to build chatbots without coding.
Are chatbots expensive?
Today, you can create a chatbot even if you don’t know how to code. Most chatbot building platforms offer at least one free plan that allows you to use basic functionalities, create your bot, deploy it to Facebook Messenger, and analyze its performance. Free plans usually allow your bot to talk to a limited number of users.
Why should you personalize your bot?
Every platform will ask you to write a bot’s name before you start designing conversations. You will also be able to add the bot’s photograph and bio. Personalizing your bot is the only way to ensure that you will stick to the same personality and storyline throughout the building process. Users often see chatbots as people, and by giving your bot an identity, you will make sure that it doesn’t sound like it has multiple personality disorder.
I think connecting my chatbot with a GoT character will help readers understand the process of chatbot creation.
And the name of our GoT chatbot is…
…Cersei. She is mean, pragmatic, and fearless and she would do anything to stay on the Iron Throne. Many people would rather hang out with Daenerys or Jon Snow. These characters are honest, noble and good-hearted, which means their actions are often predictable.
Cersei, on the other hand, is the queen of intrigues. As the meanest and the most vengeful character in the series, she has an evil plan for everybody who steps on her toes. While viewers can easily guess where Jon and Daenerys stand, there are dozens of questions they would like to ask Cersei. But before we start talking to our bot, we need to build her personality by using the most basic elements of chatbot interaction.
Choosing the bot’s name on Botsify.
Welcome / Greeting Message
The welcome message is the greeting Cersei says to every commoner who clicks on the ‘start conversation’ button. She is not a welcoming person (ask Sansa), except if you are a banker from Braavos. Her introductory message may sound something like this:
“Dear {{user_full_name}}, My name is Cersei of the House Lannister, the First of Her Name, Queen of the Andals and the First Men, Protector of the Seven Kingdoms. You can ask me questions, and I will answer them. If the question is not worth answering, I will redirect you to Ser Gregor Clegane, who will give you a step-by-step course on how to talk to the Queen of Westeros.”
Creating the welcome message on Chatfuel
Default Message / Answer
In the bot game, users, bots, and their creators often need to learn from failed attempts and mistakes. The default message is the text Cersei will send whenever you ask her a question she doesn’t understand. Knowing Cersei, it would sound something like this:
“Ser Gregor, please escort {{user_full_name}} to the dungeon.”
Creating default message on Botsify
Menu
To avoid calling out the Mountain every time someone asks her a question, Cersei might give you a few (safe) options to choose. The best way to do this is by using a menu function. We can classify the questions people want to ask Cersei in several different categories:

Iron Throne
Relationship with Jaime — OK, this isn’t a “safe option,” get ready to get close and personal with Sir Gregor Clegane.
War plans
Euron Greyjoy

After users choose a menu item, Cersei can give them a default response on the topic or set up a plot that will make their lives miserable. Knowing Cersei, she will probably go for the second option.
Adding chatbot menu on Botsify
Stories / Blocks
This feature allows us to build a longer Cersei-to-user interaction. The structure of stories and blocks is different on every chatbot platform, but most of them use keywords and phrases for finding out the user’s intention.

Keywords — where the bot recognizes a certain keyword within the user’s reply. Users who have chosen the ‘war plans’ option might ask Cersei how is she planning to defeat Daenerys’s dragons. We can add ‘dragon’ and ‘dragons’ as keywords, and connect them with an answer that will sound something like this:

“Dragons are not invulnerable as you may think. Maester Qyburn is developing a weapon that will bring them down for good!”
Adding keywords on Chatfuel
People may also ask her about White Walkers. Do you plan to join Daenerys and Jon Snow in a fight against White Walkers? After we add ‘White Walker’ and ‘White Walkers’ on the keyword list, Cersei will answer:
“White Walkers? Do you think the Queen of Westeros has enough free time to think about creatures from fairy tales and legends?”
Adding Keywords on Botsify

Phrases — are more complex syntaxes that the bot can be trained to recognize. Many people would like to ask Cersei if she’s going to marry Euron Greyjoy after the war ends. We can add ‘Euron’ as a keyword, but then we won’t be sure what answer the user is expecting. Instead, we can use the phrase ‘(Will you) marry Euron Greyjoy (after the war?)’. Just to be sure, we should also add a few alternative phrases like ‘(Do you plan on) marrying Euron Greyjoy (after the war),’ ‘(Will you) end up with Euron Greyjoy (after the war?)’, ‘(Will) Euron Greyjoy be the new King?’ etc. Cersei would probably answer this inquiry in her style:

“Of course not, Euron is a useful idiot. I will use his fleet and send him back to the Iron Islands, where he belongs.”
Adding phrases on Botsify
Forms
We have already asked Cersei several questions, and now she would like to ask us something. She can do so by using the form/user input feature. Most tools allow us to add a question and the criteria for checking the users’ answer. If the user provides us the answer that is compliant to the predefined form (like email address, phone number, or a ZIP code), the bot will identify and extract the answer. If the answer doesn’t fit into the predefined criteria, the bot will notify the user and ask him/her to try again.
If Cersei would ask you a question, she would probably want to know your address so she could send her guards to fill your basement with barrels of wildfire.
Creating forms on Botsify
Templates
If you have problems building your first chatbot, templates can help you create the basic conversation structure. Unfortunately, not all platforms offer this feature for free. Snatchbot currently has the most comprehensive list of free templates. There you can choose a pre-built layout. The template selection ranges from simple FAQ bots to ones created for a specific industry, like banking, airline, healthcare, or e-commerce.
Choosing templates on Snatchbot
Plugins
Most tools also provide plugins that can be used for making the conversations more meaningful. These plugins allow Cersei to send images, audio and video files. She can unleash her creativity and make you suffer by sending you her favorite GoT execution videos.

With the help of integrations, Cersei can talk to you on Facebook Messenger, Telegram, WeChat, Slack, and many other communication apps. She can also sell her fan gear and ask you for donations by integrating in-bot payments from PayPal accounts. Her sales pitch will probably sound something like this:
“Gold wins wars! Would you rather invest your funds in a member of a respected family, who always pays her debts, or in the chaotic war endeavor of a crazy revolutionary, whose strength lies in three flying lizards? If your pockets are full of gold, you are already on my side. Now you can complete your checkout on PayPal.”
Chatbot building is now easier than ever, and even small businesses are starting to use the incredible benefits of artificial intelligence. If you still don’t believe that chatbots can replace customer service representatives, I suggest you try to develop a bot based on your favorite TV show, movie or book character and talk with him/her for a while. This way, you will be able to understand the concept that stands behind this amazing technology and use it to improve your business.
Now I’m off to talk to Cersei. Maybe she will feed me some Season 8 spoilers.
This article was originally published by Chatbots Magazine. Read the original post here.
Image credits for screenshots in post: Branislav Srdanovic
Banner stock media provided by new_vision_studio / Pond5 Continue reading

Posted in Human Robots