Tag Archives: TAKE

#437758 Remotely Operated Robot Takes Straight ...

Roboticists love hard problems. Challenges like the DRC and SubT have helped (and are still helping) to catalyze major advances in robotics, but not all hard problems require a massive amount of DARPA funding—sometimes, a hard problem can just be something very specific that’s really hard for a robot to do, especially relative to the ease with which a moderately trained human might be able to do it. Catching a ball. Putting a peg in a hole. Or using a straight razor to shave someone’s face without Sweeney Todd-izing them.

This particular roboticist who sees straight-razor face shaving as a hard problem that robots should be solving is John Peter Whitney, who we first met back at IROS 2014 in Chicago when (working at Disney Research) he introduced an elegant fluidic actuator system. These actuators use tubes containing a fluid (like air or water) to transmit forces from a primary robot to a secondary robot in a very efficient way that also allows for either compliance or very high fidelity force feedback, depending on the compressibility of the fluid.

Photo: John Peter Whitney/Northeastern University

Barber meets robot: Boston based barber Jesse Cabbage [top, right] observes the machine created by roboticist John Peter Whitney. Before testing the robot on Whitney’s face, they used his arm for a quick practice [bottom].

Whitney is now at Northeastern University, in Boston, and he recently gave a talk at the RSS workshop on “Reacting to Contact,” where he suggested that straight razor shaving would be an interesting and valuable problem for robotics to work toward, due to its difficulty and requirement for an extremely high level of both performance and reliability.

Now, a straight razor is sort of like a safety razor, except with the safety part removed, which in fact does make it significantly less safe for humans, much less robots. Also not ideal for those worried about safety is that as part of the process the razor ends up in distressingly close proximity to things like the artery that is busily delivering your brain’s entire supply of blood, which is very close to the top of the list of things that most people want to keep blades very far away from. But that didn’t stop Whitney from putting his whiskers where his mouth is and letting his robotic system mediate the ministrations of a professional barber. It’s not an autonomous robotic straight-razor shave (because Whitney is not totally crazy), but it’s a step in that direction, and requires that the hardware Whitney developed be dead reliable.

Perhaps that was a poor choice of words. But, rest assured that Whitney lived long enough to answer our questions after. Here’s the video; it’s part of a longer talk, but it should start in the right spot, at about 23:30.

If Whitney looked a little bit nervous to you, that’s because he was. “This was the first time I’d ever been shaved by someone (something?!) else with a straight razor,” he told us, and while having a professional barber at the helm was some comfort, “the lack of feeling and control on my part was somewhat unsettling.” Whitney says that the barber, Jesse Cabbage of Dentes Barbershop in Somerville, Mass., was surprised by how well he could feel the tactile sensations being transmitted from the razor. “That’s one of the reasons we decided to make this video,” Whitney says. “I can’t show someone how something feels, so the next best thing is to show a delicate task that either from experience or intuition makes it clear to the viewer that the system must have these properties—otherwise the task wouldn’t be possible.”

And as for when Whitney might be comfortable getting shaved by a robotic system without a human in the loop? It’s going to take a lot of work, as do most other hard problems in robotics. “There are two parts to this,” he explains. “One is fault-tolerance of the components themselves (software, electronics, etc.) and the second is the quality of the perception and planning algorithms.”

He offers a comparison to self-driving cars, in which similar (or greater) risks are incurred: “To learn how to perceive, interpret, and adapt, we need a very high-fidelity model of the problem, or a wealth of data and experience, or both” he says. “But in the case of shaving we are greatly lacking in both!” He continues with the analogy: “I think there is a natural progression—the community started with autonomous driving of toy cars on closed courses and worked up to real cars carrying human passengers; in robotic manipulation we are beginning to move out of the ‘toy car’ stage and so I think it’s good to target high-consequence hard problems to help drive progress.”

The ultimate goal is much more general than the creation of a dedicated straight razor shaving robot. This particular hardware system is actually a testbed for exploring MRI-compatible remote needle biopsy.

Of course, the ultimate goal here is much more general than the creation of a dedicated straight razor shaving robot; it’s a challenge that includes a host of sub-goals that will benefit robotics more generally. This particular hardware system Whitney is developing is actually a testbed for exploring MRI-compatible remote needle biopsy, and he and his students are collaborating with Brigham and Women’s Hospital in Boston on adapting this technology to prostate biopsy and ablation procedures. They’re also exploring how delicate touch can be used as a way to map an environment and localize within it, especially where using vision may not be a good option. “These traits and behaviors are especially interesting for applications where we must interact with delicate and uncertain environments,” says Whitney. “Medical robots, assistive and rehabilitation robots and exoskeletons, and shared-autonomy teleoperation for delicate tasks.”
A paper with more details on this robotic system, “Series Elastic Force Control for Soft Robotic Fluid Actuators,” is available on arXiv. Continue reading

Posted in Human Robots

#437747 High Performance Ornithopter Drone Is ...

The vast majority of drones are rotary-wing systems (like quadrotors), and for good reason: They’re cheap, they’re easy, they scale up and down well, and we’re getting quite good at controlling them, even in very challenging environments. For most applications, though, drones lose out to birds and their flapping wings in almost every way—flapping wings are very efficient, enable astonishing agility, and are much safer, able to make compliant contact with surfaces rather than shredding them like a rotor system does. But flapping wing have their challenges too: Making flapping-wing robots is so much more difficult than just duct taping spinning motors to a frame that, with a few exceptions, we haven’t seen nearly as much improvement as we have in more conventional drones.

In Science Robotics last week, a group of roboticists from Singapore, Australia, China, and Taiwan described a new design for a flapping-wing robot that offers enough thrust and control authority to make stable transitions between aggressive flight modes—like flipping and diving—while also being able to efficiently glide and gently land. While still more complex than a quadrotor in both hardware and software, this ornithopter’s advantages might make it worthwhile.

One reason that making a flapping-wing robot is difficult is because the wings have to move back and forth at high speed while electric motors spin around and around at high speed. This requires a relatively complex transmission system, which (if you don’t do it carefully), leads to weight penalties and a significant loss of efficiency. One particular challenge is that the reciprocating mass of the wings tends to cause the entire robot to flex back and forth, which alternately binds and disengages elements in the transmission system.

The researchers’ new ornithopter design mitigates the flexing problem using hinges and bearings in pairs. Elastic elements also help improve efficiency, and the ornithopter is in fact more efficient with its flapping wings than it would be with a rotary propeller-based propulsion system. Its thrust exceeds its 26-gram mass by 40 percent, which is where much of the aerobatic capability comes from. And one of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft.

One of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft

It’s not just thrust that’s a challenge for ornithopters: Control is much more complex as well. Like birds, ornithopters have tails, but unlike birds, they have to rely almost entirely on tail control authority, not having that bird-level of control over fine wing movements. To make an acrobatic level of control possible, the tail control surfaces on this ornithopter are huge—the tail plane area is 35 percent of the wing area. The wings can also provide some assistance in specific circumstances, as by combining tail control inputs with a deliberate stall of the things to allow the ornithopter to execute rapid flips.

With the ability to take off, hover, glide, land softly, maneuver acrobatically, fly quietly, and interact with its environment in a way that’s not (immediately) catastrophic, flapping-wing drones easily offer enough advantages to keep them interesting. Now that ornithopters been shown to be even more efficient than rotorcraft, the researchers plan to focus on autonomy with the goal of moving their robot toward real-world usefulness.

“Efficient flapping wing drone arrests high-speed flight using post-stall soaring,” by Yao-Wei Chin, Jia Ming Kok, Yong-Qiang Zhu, Woei-Leong Chan, Javaan S. Chahl, Boo Cheong Khoo, and Gih-Keong Lau from from Nanyang Technological University in Singapore, National University of Singapore, Defence Science and Technology Group in Canberra, Australia, Qingdao University of Technology in Shandong, China, University of South Australia in Mawson Lakes, and National Chiao Tung University in Hsinchu, Taiwan, was published in Science Robotics. Continue reading

Posted in Human Robots

#437745 Video Friday: Japan’s Giant Gundam ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.

In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.

[ Gundam Factory Yokohama ]

Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.

So that’s where Cassie’s eyes go.

[ Berkeley ]

Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.

[ SubT ]

Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.

[ Softbank ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ University of Michigan ]

Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.

[ Suzimori Endo Lab ]

The most explode-y of drones manages not to explode this time.

[ SpaceX ]

At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.

While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.

[ Amazon ]

Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.

This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.

[ FLIR ]

Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.

[ Paper ] via [ HKUST ]

Emys can help keep kindergarteners sitting still for a long time, which is not small feat!

[ Emys ]

Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.

[ DJI ]

This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.

[ ABB ]

This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.

[ NASA ]

Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.

[ MassTech ]

San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.

You can apply for this experience through Formant at the link below.

[ Formant ] via [ TRR ]

Thanks Steve!

An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.

For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.

[ IAS ] Continue reading

Posted in Human Robots

#437728 A Battery That’s Tough Enough To ...

Batteries can add considerable mass to any design, and they have to be supported using a sufficiently strong structure, which can add significant mass of its own. Now researchers at the University of Michigan have designed a structural zinc-air battery, one that integrates directly into the machine that it powers and serves as a load-bearing part.

That feature saves weight and thus increases effective storage capacity, adding to the already hefty energy density of the zinc-air chemistry. And the very elements that make the battery physically strong help contain the chemistry’s longstanding tendency to degrade over many hundreds of charge-discharge cycles.

The research is being published today in Science Robotics.

Nicholas Kotov, a professor of chemical engineer, is the leader of the project. He would not say how many watt-hours his prototype stores per gram, but he did note that zinc air—because it draw on ambient air for its electricity-producing reactions—is inherently about three times as energy-dense as lithium-ion cells. And, because using the battery as a structural part means dispensing with an interior battery pack, you could free up perhaps 20 percent of a machine’s interior. Along with other factors the new battery could in principle provide as much as 72 times the energy per unit of volume (not of mass) as today’s lithium-ion workhorses.

Illustration: Alice Kitterman/Science Robotics

“It’s not as if we invented something that was there before us,” Kotov says. ”I look in the mirror and I see my layer of fat—that’s for the storage of energy, but it also serves other purposes,” like keeping you warm in the wintertime. (A similar advance occurred in rocketry when designers learned how to make some liquid propellant tanks load bearing, eliminating the mass penalty of having separate external hull and internal tank walls.)

Others have spoken of putting batteries, including the lithium-ion kind, into load-bearing parts in vehicles. Ford, BMW, and Airbus, for instance, have expressed interest in the idea. The main problem to overcome is the tradeoff in load-bearing batteries between electrochemical performance and mechanical strength.

Image: Kotov Lab/University of Michigan

Key to the battery's physical toughness and to its long life cycle is the nanofiber membrane, made of Kevlar.

The Michigan group get both qualities by using a solid electrolyte (which can’t leak under stress) and by covering the electrodes with a membrane whose nanostructure of fibers is derived from Kevlar. That makes the membrane tough enough to suppress the growth of dendrites—branching fibers of metal that tend to form on an electrode with every charge-discharge cycle and which degrade the battery.

The Kevlar need not be purchased new but can be salvaged from discarded body armor. Other manufacturing steps should be easy, too, Kotov says. He has only just begun to talk to potential commercial partners, but he says there’s no reason why his battery couldn’t hit the market in the next three or four years.

Drones and other autonomous robots might be the most logical first application because their range is so severely chained to their battery capacity. Also, because such robots don’t carry people about, they face less of a hurdle from safety regulators leery of a fundamentally new battery type.

“And it’s not just about the big Amazon robots but also very small ones,” Kotov says. “Energy storage is a very significant issue for small and flexible soft robots.”

Here’s a video showing how Kotov’s lab has used batteries to form the “exoskeleton” of robots that scuttle like worms or scorpions. Continue reading

Posted in Human Robots

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots