Tag Archives: systems

#433954 The Next Great Leap Forward? Combining ...

The Internet of Things is a popular vision of objects with internet connections sending information back and forth to make our lives easier and more comfortable. It’s emerging in our homes, through everything from voice-controlled speakers to smart temperature sensors. To improve our fitness, smart watches and Fitbits are telling online apps how much we’re moving around. And across entire cities, interconnected devices are doing everything from increasing the efficiency of transport to flood detection.

In parallel, robots are steadily moving outside the confines of factory lines. They’re starting to appear as guides in shopping malls and cruise ships, for instance. As prices fall and the artificial intelligence (AI) and mechanical technology continues to improve, we will get more and more used to them making independent decisions in our homes, streets and workplaces.

Here lies a major opportunity. Robots become considerably more capable with internet connections. There is a growing view that the next evolution of the Internet of Things will be to incorporate them into the network, opening up thrilling possibilities along the way.

Home Improvements
Even simple robots become useful when connected to the internet—getting updates about their environment from sensors, say, or learning about their users’ whereabouts and the status of appliances in the vicinity. This lets them lend their bodies, eyes, and ears to give an otherwise impersonal smart environment a user-friendly persona. This can be particularly helpful for people at home who are older or have disabilities.

We recently unveiled a futuristic apartment at Heriot-Watt University to work on such possibilities. One of a few such test sites around the EU, our whole focus is around people with special needs—and how robots can help them by interacting with connected devices in a smart home.

Suppose a doorbell rings that has smart video features. A robot could find the person in the home by accessing their location via sensors, then tell them who is at the door and why. Or it could help make video calls to family members or a professional carer—including allowing them to make virtual visits by acting as a telepresence platform.

Equally, it could offer protection. It could inform them the oven has been left on, for example—phones or tablets are less reliable for such tasks because they can be misplaced or not heard.

Similarly, the robot could raise the alarm if its user appears to be in difficulty.Of course, voice-assistant devices like Alexa or Google Home can offer some of the same services. But robots are far better at moving, sensing and interacting with their environment. They can also engage their users by pointing at objects or acting more naturally, using gestures or facial expressions. These “social abilities” create bonds which are crucially important for making users more accepting of the support and making it more effective.

To help incentivize the various EU test sites, our apartment also hosts the likes of the European Robotic League Service Robot Competition—a sort of Champions League for robots geared to special needs in the home. This brought academics from around Europe to our laboratory for the first time in January this year. Their robots were tested in tasks like welcoming visitors to the home, turning the oven off, and fetching objects for their users; and a German team from Koblenz University won with a robot called Lisa.

Robots Offshore
There are comparable opportunities in the business world. Oil and gas companies are looking at the Internet of Things, for example; experimenting with wireless sensors to collect information such as temperature, pressure, and corrosion levels to detect and possibly predict faults in their offshore equipment.

In the future, robots could be alerted to problem areas by sensors to go and check the integrity of pipes and wells, and to make sure they are operating as efficiently and safely as possible. Or they could place sensors in parts of offshore equipment that are hard to reach, or help to calibrate them or replace their batteries.

The likes of the ORCA Hub, a £36m project led by the Edinburgh Centre for Robotics, bringing together leading experts and over 30 industry partners, is developing such systems. The aim is to reduce the costs and the risks of humans working in remote hazardous locations.

ORCA tests a drone robot. ORCA
Working underwater is particularly challenging, since radio waves don’t move well under the sea. Underwater autonomous vehicles and sensors usually communicate using acoustic waves, which are many times slower (1,500 meters a second vs. 300m meters a second for radio waves). Acoustic communication devices are also much more expensive than those used above the water.

This academic project is developing a new generation of low-cost acoustic communication devices, and trying to make underwater sensor networks more efficient. It should help sensors and underwater autonomous vehicles to do more together in future—repair and maintenance work similar to what is already possible above the water, plus other benefits such as helping vehicles to communicate with one another over longer distances and tracking their location.

Beyond oil and gas, there is similar potential in sector after sector. There are equivalents in nuclear power, for instance, and in cleaning and maintaining the likes of bridges and buildings. My colleagues and I are also looking at possibilities in areas such as farming, manufacturing, logistics, and waste.

First, however, the research sectors around the Internet of Things and robotics need to properly share their knowledge and expertise. They are often isolated from one another in different academic fields. There needs to be more effort to create a joint community, such as the dedicated workshops for such collaboration that we organized at the European Robotics Forum and the IoT Week in 2017.

To the same end, industry and universities need to look at setting up joint research projects. It is particularly important to address safety and security issues—hackers taking control of a robot and using it to spy or cause damage, for example. Such issues could make customers wary and ruin a market opportunity.

We also need systems that can work together, rather than in isolated applications. That way, new and more useful services can be quickly and effectively introduced with no disruption to existing ones. If we can solve such problems and unite robotics and the Internet of Things, it genuinely has the potential to change the world.

Mauro Dragone, Assistant Professor, Cognitive Robotics, Multiagent systems, Internet of Things, Heriot-Watt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Willyam Bradberry/Shutterstock.com Continue reading

Posted in Human Robots

#433950 How the Spatial Web Will Transform Every ...

What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or is our future workplace completely virtualized, whereby we hang out at home in our PJs while walking about our virtual corporate headquarters?

This blog will look at the future of work during the age of Web 3.0… Examining scenarios in which AI, VR, and the spatial web converge to transform every element of our careers, from training to execution to free time.

Three weeks ago, I explored the vast implications of Web 3.0 on news, media, smart advertising, and personalized retail. And to offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.

A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.

But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments.

Suddenly, all our information will be manipulated, stored, understood, and experienced in spatial ways.

In this third installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for:

Professional Training
Delocalized Business and the Virtual Workplace
Smart Permissions and Data Security

Let’s dive in.

Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

In September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mock-ups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.

Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.

But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.

Rise of the Virtual Workplace and Digital Data Integrity
In addition to enabling an annual $52 billion virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.

Too good to be true? Check out an incredible publicly listed company called eXp Realty.

Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading.

But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.

And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial.

What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.

Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.

Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.

This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.

But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imaging showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.

Life-like virtual modules are already unlocking countless professional training camps, modifiable in real-time and easily updated.

Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading.

And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.

Welcome to the Spatial Web workplace.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: MONOPOLY919 / Shutterstock.com Continue reading

Posted in Human Robots

#433928 The Surprising Parallels Between ...

The human mind can be a confusing and overwhelming place. Despite incredible leaps in human progress, many of us still struggle to make our peace with our thoughts. The roots of this are complex and multifaceted. To find explanations for the global mental health epidemic, one can tap into neuroscience, psychology, evolutionary biology, or simply observe the meaningless systems that dominate our modern-day world.

This is not only the context of our reality but also that of the critically-acclaimed Netflix series, Maniac. Psychological dark comedy meets science fiction, Maniac is a retro, futuristic, and hallucinatory trip that is filled with hidden symbols. Directed by Cary Joji Fukunaga, the series tells the story of two strangers who decide to participate in the final stage of a “groundbreaking” pharmaceutical trial—one that combines novel pharmaceuticals with artificial intelligence, and promises to make their emotional pain go away.

Naturally, things don’t go according to plan.

From exams used for testing defense mechanisms to techniques such as cognitive behavioral therapy, the narrative infuses genuine psychological science. As perplexing as the series may be to some viewers, many of the tools depicted actually have a strong grounding in current technological advancements.

Catalysts for Alleviating Suffering
In the therapy of Maniac, participants undergo a three-day trial wherein they ingest three pills and appear to connect their consciousness to a superintelligent AI. Each participant is hurled into the traumatic experiences imprinted in their subconscious and forced to cope with them in a series of hallucinatory and dream-like experiences.

Perhaps the most recognizable parallel that can be drawn is with the latest advancements in psychedelic therapy. Psychedelics are a class of drugs that alter the experience of consciousness, and often cause radical changes in perception and cognitive processes.

Through a process known as transient hypofrontality, the executive “over-thinking” parts of our brains get a rest, and deeper areas become more active. This experience, combined with the breakdown of the ego, is often correlated with feelings of timelessness, peacefulness, presence, unity, and above all, transcendence.

Despite being not addictive and extremely difficult to overdose on, regulators looked down on the use of psychedelics for decades and many continue to dismiss them as “party drugs.” But in the last few years, all of this began to change.

Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment to treat depression and anxiety. Today, there is a growing and overwhelming body of research that proves that not only are psychedelics such as LSD, MDMA, or Psylicybin effective catalysts to alleviate suffering and enhance the human condition, but they are potentially the most effective tools out there.

It’s important to realize that these substances are not solutions on their own, but rather catalysts for more effective therapy. They can be groundbreaking, but only in the right context and setting.

Brain-Machine Interfaces
In Maniac, the medication-assisted therapy is guided by what appears to be a super-intelligent form of artificial intelligence called the GRTA, nicknamed Gertie. Gertie, who is a “guide” in machine form, accesses the minds of the participants through what appears to be a futuristic brain-scanning technology and curates customized hallucinatory experiences with the goal of accelerating the healing process.

Such a powerful form of brain-scanning technology is not unheard of. Current levels of scanning technology are already allowing us to decipher dreams and connect three human brains, and are only growing exponentially. Though they are nowhere as advanced as Gertie (we have a long way to go before we get to this kind of general AI), we are also seeing early signs of AI therapy bots, chatbots that listen, think, and communicate with users like a therapist would.

The parallels between current advancements in mental health therapy and the methods in Maniac can be startling, and are a testament to how science fiction and the arts can be used to explore the existential implications of technology.

Not Necessarily a Dystopia
While there are many ingenious similarities between the technology in Maniac and the state of mental health therapy, it’s important to recognize the stark differences. Like many other blockbuster science fiction productions, Maniac tells a fundamentally dystopian tale.

The series tells the story of the 73rd iteration of a controversial drug trial, one that has experienced many failures and even led to various participants being braindead. The scientists appear to be evil, secretive, and driven by their own superficial agendas and deep unresolved emotional issues.

In contrast, clinicians and researchers are not only required to file an “investigational new drug application” with the FDA (and get approval) but also update the agency with safety and progress reports throughout the trial.

Furthermore, many of today’s researchers are driven by a strong desire to contribute to the well-being and progress of our species. Even more, the results of decades of research by organizations like MAPS have been exceptionally promising and aligned with positive values. While Maniac is entertaining and thought-provoking, viewers must not forget the positive potential of such advancements in mental health therapy.

Science, technology, and psychology aside, Maniac is a deep commentary on the human condition and the often disorienting states that pain us all. Within any human lifetime, suffering is inevitable. It is the disproportionate, debilitating, and unjust levels of suffering that we ought to tackle as a society. Ultimately, Maniac explores whether advancements in science and technology can help us live not a life devoid of suffering, but one where it is balanced with fulfillment.

Image Credit: xpixel / Shutterstock.com Continue reading

Posted in Human Robots

#433901 The SpiNNaker Supercomputer, Modeled ...

We’ve long used the brain as inspiration for computers, but the SpiNNaker supercomputer, switched on this month, is probably the closest we’ve come to recreating it in silicon. Now scientists hope to use the supercomputer to model the very thing that inspired its design.

The brain is the most complex machine in the known universe, but that complexity comes primarily from its architecture rather than the individual components that make it up. Its highly interconnected structure means that relatively simple messages exchanged between billions of individual neurons add up to carry out highly complex computations.

That’s the paradigm that has inspired the ‘Spiking Neural Network Architecture” (SpiNNaker) supercomputer at the University of Manchester in the UK. The project is the brainchild of Steve Furber, the designer of the original ARM processor. After a decade of development, a million-core version of the machine that will eventually be able to simulate up to a billion neurons was switched on earlier this month.

The idea of splitting computation into very small chunks and spreading them over many processors is already the leading approach to supercomputing. But even the most parallel systems require a lot of communication, and messages may have to pack in a lot of information, such as the task that needs to be completed or the data that needs to be processed.

In contrast, messages in the brain consist of simple electrochemical impulses, or spikes, passed between neurons, with information encoded primarily in the timing or rate of those spikes (which is more important is a topic of debate among neuroscientists). Each neuron is connected to thousands of others via synapses, and complex computation relies on how spikes cascade through these highly-connected networks.

The SpiNNaker machine attempts to replicate this using a model called Address Event Representation. Each of the million cores can simulate roughly a million synapses, so depending on the model, 1,000 neurons with 1,000 connections or 100 neurons with 10,000 connections. Information is encoded in the timing of spikes and the identity of the neuron sending them. When a neuron is activated it broadcasts a tiny packet of data that contains its address, and spike timing is implicitly conveyed.

By modeling their machine on the architecture of the brain, the researchers hope to be able to simulate more biological neurons in real time than any other machine on the planet. The project is funded by the European Human Brain Project, a ten-year science mega-project aimed at bringing together neuroscientists and computer scientists to understand the brain, and researchers will be able to apply for time on the machine to run their simulations.

Importantly, it’s possible to implement various different neuronal models on the machine. The operation of neurons involves a variety of complex biological processes, and it’s still unclear whether this complexity is an artefact of evolution or central to the brain’s ability to process information. The ability to simulate up to a billion simple neurons or millions of more complex ones on the same machine should help to slowly tease out the answer.

Even at a billion neurons, that still only represents about one percent of the human brain, so it’s still going to be limited to investigating isolated networks of neurons. But the previous 500,000-core machine has already been used to do useful simulations of the Basal Ganglia—an area affected in Parkinson’s disease—and an outer layer of the brain that processes sensory information.

The full-scale supercomputer will make it possible to study even larger networks previously out of reach, which could lead to breakthroughs in our understanding of both the healthy and unhealthy functioning of the brain.

And while neurological simulation is the main goal for the machine, it could also provide a useful research tool for roboticists. Previous research has already shown a small board of SpiNNaker chips can be used to control a simple wheeled robot, but Furber thinks the SpiNNaker supercomputer could also be used to run large-scale networks that can process sensory input and generate motor output in real time and at low power.

That low power operation is of particular promise for robotics. The brain is dramatically more power-efficient than conventional supercomputers, and by borrowing from its principles SpiNNaker has managed to capture some of that efficiency. That could be important for running mobile robotic platforms that need to carry their own juice around.

This ability to run complex neural networks at low power has been one of the main commercial drivers for so-called neuromorphic computing devices that are physically modeled on the brain, such as IBM’s TrueNorth chip and Intel’s Loihi. The hope is that complex artificial intelligence applications normally run in massive data centers could be run on edge devices like smartphones, cars, and robots.

But these devices, including SpiNNaker, operate very differently from the leading AI approaches, and its not clear how easy it would be to transfer between the two. The need to adopt an entirely new programming paradigm is likely to limit widespread adoption, and the lack of commercial traction for the aforementioned devices seems to back that up.

At the same time, though, this new paradigm could potentially lead to dramatic breakthroughs in massively parallel computing. SpiNNaker overturns many of the foundational principles of how supercomputers work that make it much more flexible and error-tolerant.

For now, the machine is likely to be firmly focused on accelerating our understanding of how the brain works. But its designers also hope those findings could in turn point the way to more efficient and powerful approaches to computing.

Image Credit: Adrian Grosu / Shutterstock.com Continue reading

Posted in Human Robots

#433895 Sci-Fi Movies Are the Secret Weapon That ...

If there’s one line that stands the test of time in Steven Spielberg’s 1993 classic Jurassic Park, it’s probably Jeff Goldblum’s exclamation, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.”

Goldblum’s character, Dr. Ian Malcolm, was warning against the hubris of naively tinkering with dinosaur DNA in an effort to bring these extinct creatures back to life. Twenty-five years on, his words are taking on new relevance as a growing number of scientists and companies are grappling with how to tread the line between “could” and “should” in areas ranging from gene editing and real-world “de-extinction” to human augmentation, artificial intelligence and many others.

Despite growing concerns that powerful emerging technologies could lead to unexpected and wide-ranging consequences, innovators are struggling with how to develop beneficial new products while being socially responsible. Part of the answer could lie in watching more science fiction movies like Jurassic Park.

Hollywood Lessons in Societal Risks
I’ve long been interested in how innovators and others can better understand the increasingly complex landscape around the social risks and benefits associated with emerging technologies. Growing concerns over the impacts of tech on jobs, privacy, security and even the ability of people to live their lives without undue interference highlight the need for new thinking around how to innovate responsibly.

New ideas require creativity and imagination, and a willingness to see the world differently. And this is where science fiction movies can help.

Sci-fi flicks are, of course, notoriously unreliable when it comes to accurately depicting science and technology. But because their plots are often driven by the intertwined relationships between people and technology, they can be remarkably insightful in revealing social factors that affect successful and responsible innovation.

This is clearly seen in Jurassic Park. The movie provides a surprisingly good starting point for thinking about the pros and cons of modern-day genetic engineering and the growing interest in bringing extinct species back from the dead. But it also opens up conversations around the nature of complex systems that involve both people and technology, and the potential dangers of “permissionless” innovation that’s driven by power, wealth and a lack of accountability.

Similar insights emerge from a number of other movies, including Spielberg’s 2002 film “Minority Report”—which presaged a growing capacity for AI-enabled crime prediction and the ethical conundrums it’s raising—as well as the 2014 film Ex Machina.

As with Jurassic Park, Ex Machina centers around a wealthy and unaccountable entrepreneur who is supremely confident in his own abilities. In this case, the technology in question is artificial intelligence.

The movie tells a tale of an egotistical genius who creates a remarkable intelligent machine—but he lacks the awareness to recognize his limitations and the risks of what he’s doing. It also provides a chilling insight into potential dangers of creating machines that know us better than we know ourselves, while not being bound by human norms or values.

The result is a sobering reminder of how, without humility and a good dose of humanity, our innovations can come back to bite us.

The technologies in Jurassic Park, Minority Report, and Ex Machina lie beyond what is currently possible. Yet these films are often close enough to emerging trends that they help reveal the dangers of irresponsible, or simply naive, innovation. This is where these and other science fiction movies can help innovators better understand the social challenges they face and how to navigate them.

Real-World Problems Worked Out On-Screen
In a recent op-ed in the New York Times, journalist Kara Swisher asked, “Who will teach Silicon Valley to be ethical?” Prompted by a growing litany of socially questionable decisions amongst tech companies, Swisher suggests that many of them need to grow up and get serious about ethics. But ethics alone are rarely enough. It’s easy for good intentions to get swamped by fiscal pressures and mired in social realities.

Elon Musk has shown that brilliant tech innovators can take ethical missteps along the way. Image Credit:AP Photo/Chris Carlson
Technology companies increasingly need to find some way to break from business as usual if they are to become more responsible. High-profile cases involving companies like Facebook and Uber as well as Tesla’s Elon Musk have highlighted the social as well as the business dangers of operating without fully understanding the consequences of people-oriented actions.

Many more companies are struggling to create socially beneficial technologies and discovering that, without the necessary insights and tools, they risk blundering about in the dark.

For instance, earlier this year, researchers from Google and DeepMind published details of an artificial intelligence-enabled system that can lip-read far better than people. According to the paper’s authors, the technology has enormous potential to improve the lives of people who have trouble speaking aloud. Yet it doesn’t take much to imagine how this same technology could threaten the privacy and security of millions—especially when coupled with long-range surveillance cameras.

Developing technologies like this in socially responsible ways requires more than good intentions or simply establishing an ethics board. People need a sophisticated understanding of the often complex dynamic between technology and society. And while, as Mozilla’s Mitchell Baker suggests, scientists and technologists engaging with the humanities can be helpful, it’s not enough.

An Easy Way into a Serious Discipline
The “new formulation” of complementary skills Baker says innovators desperately need already exists in a thriving interdisciplinary community focused on socially responsible innovation. My home institution, the School for the Future of Innovation in Society at Arizona State University, is just one part of this.

Experts within this global community are actively exploring ways to translate good ideas into responsible practices. And this includes the need for creative insights into the social landscape around technology innovation, and the imagination to develop novel ways to navigate it.

People love to come together as a movie audience.Image credit: The National Archives UK, CC BY 4.0
Here is where science fiction movies become a powerful tool for guiding innovators, technology leaders and the companies where they work. Their fictional scenarios can reveal potential pitfalls and opportunities that can help steer real-world decisions toward socially beneficial and responsible outcomes, while avoiding unnecessary risks.

And science fiction movies bring people together. By their very nature, these films are social and educational levelers. Look at who’s watching and discussing the latest sci-fi blockbuster, and you’ll often find a diverse cross-section of society. The genre can help build bridges between people who know how science and technology work, and those who know what’s needed to ensure they work for the good of society.

This is the underlying theme in my new book Films from the Future: The Technology and Morality of Sci-Fi Movies. It’s written for anyone who’s curious about emerging trends in technology innovation and how they might potentially affect society. But it’s also written for innovators who want to do the right thing and just don’t know where to start.

Of course, science fiction films alone aren’t enough to ensure socially responsible innovation. But they can help reveal some profound societal challenges facing technology innovators and possible ways to navigate them. And what better way to learn how to innovate responsibly than to invite some friends round, open the popcorn and put on a movie?

It certainly beats being blindsided by risks that, with hindsight, could have been avoided.

Andrew Maynard, Director, Risk Innovation Lab, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Fred Mantel / Shutterstock.com Continue reading

Posted in Human Robots