Tag Archives: system

#436258 For Centuries, People Dreamed of a ...

This is part six of a six-part series on the history of natural language processing.

In February of this year, OpenAI, one of the foremost artificial intelligence labs in the world, announced that a team of researchers had built a powerful new text generator called the Generative Pre-Trained Transformer 2, or GPT-2 for short. The researchers used a reinforcement learning algorithm to train their system on a broad set of natural language processing (NLP) capabilities, including reading comprehension, machine translation, and the ability to generate long strings of coherent text.

But as is often the case with NLP technology, the tool held both great promise and great peril. Researchers and policy makers at the lab were concerned that their system, if widely released, could be exploited by bad actors and misappropriated for “malicious purposes.”

The people of OpenAI, which defines its mission as “discovering and enacting the path to safe artificial general intelligence,” were concerned that GPT-2 could be used to flood the Internet with fake text, thereby degrading an already fragile information ecosystem. For this reason, OpenAI decided that it would not release the full version of GPT-2 to the public or other researchers.

GPT-2 is an example of a technique in NLP called language modeling, whereby the computational system internalizes a statistical blueprint of a text so it’s able to mimic it. Just like the predictive text on your phone—which selects words based on words you’ve used before—GPT-2 can look at a string of text and then predict what the next word is likely to be based on the probabilities inherent in that text.

GPT-2 can be seen as a descendant of the statistical language modeling that the Russian mathematician A. A. Markov developed in the early 20th century (covered in part three of this series).

GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters.

What’s different with GPT-2, though, is the scale of the textual data modeled by the system. Whereas Markov analyzed a string of 20,000 letters to create a rudimentary model that could predict the likelihood of the next letter of a text being a consonant or a vowel, GPT-2 used 8 million articles scraped from Reddit to predict what the next word might be within that entire dataset.

And whereas Markov manually trained his model by counting only two parameters—vowels and consonants—GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters, burning through huge amounts of computational power in the process.

The results were impressive. In their blog post, OpenAI reported that GPT-2 could generate synthetic text in response to prompts, mimicking whatever style of text it was shown. If you prompt the system with a line of William Blake’s poetry, it can generate a line back in the Romantic poet’s style. If you prompt the system with a cake recipe, you get a newly invented recipe in response.

Perhaps the most compelling feature of GPT-2 is that it can answer questions accurately. For example, when OpenAI researchers asked the system, “Who wrote the book The Origin of Species?”—it responded: “Charles Darwin.” While only able to respond accurately some of the time, the feature does seem to be a limited realization of Gottfried Leibniz’s dream of a language-generating machine that could answer any and all human questions (described in part two of this series).

After observing the power of the new system in practice, OpenAI elected not to release the fully trained model. In the lead up to its release in February, there had been heightened awareness about “deepfakes”—synthetic images and videos, generated via machine learning techniques, in which people do and say things they haven’t really done and said. Researchers at OpenAI worried that GPT-2 could be used to essentially create deepfake text, making it harder for people to trust textual information online.

Responses to this decision varied. On one hand, OpenAI’s caution prompted an overblown reaction in the media, with articles about the “dangerous” technology feeding into the Frankenstein narrative that often surrounds developments in AI.

Others took issue with OpenAI’s self-promotion, with some even suggesting that OpenAI purposefully exaggerated GPT-2s power in order to create hype—while contravening a norm in the AI research community, where labs routinely share data, code, and pre-trained models. As machine learning researcher Zachary Lipton tweeted, “Perhaps what's *most remarkable* about the @OpenAI controversy is how *unremarkable* the technology is. Despite their outsize attention & budget, the research itself is perfectly ordinary—right in the main branch of deep learning NLP research.”

OpenAI stood by its decision to release only a limited version of GPT-2, but has since released larger models for other researchers and the public to experiment with. As yet, there has been no reported case of a widely distributed fake news article generated by the system. But there have been a number of interesting spin-off projects, including GPT-2 poetry and a webpage where you can prompt the system with questions yourself.

Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and
Star Wars movies.

There’s even a Reddit group populated entirely with text produced by GPT-2-powered bots. Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and Star Wars movies.

This bot-powered conversation may signify the new condition of life online, where language is increasingly created by a combination of human and non-human agents, and where maintaining the distinction between human and non-human, despite our best efforts, is increasingly difficult.

The idea of using rules, mechanisms, and algorithms to generate language has inspired people in many different cultures throughout history. But it’s in the online world that this powerful form of wordcraft may really find its natural milieu—in an environment where the identity of speakers becomes more ambiguous, and perhaps, less relevant. It remains to be seen what the consequences will be for language, communication, and our sense of human identity, which is so bound up with our ability to speak in natural language.

This is the sixth installment of a six-part series on the history of natural language processing. Last week’s post explained how an innocent Microsoft chatbot turned instantly racist on Twitter.

You can also check out our prior series on the untold history of AI. Continue reading

Posted in Human Robots

#436252 After AI, Fashion and Shopping Will ...

AI and broadband are eating retail for breakfast. In the first half of 2019, we’ve seen 19 retailer bankruptcies. And the retail apocalypse is only accelerating.

What’s coming next is astounding. Why drive when you can speak? Revenue from products purchased via voice commands is expected to quadruple from today’s US$2 billion to US$8 billion by 2023.

Virtual reality, augmented reality, and 3D printing are converging with artificial intelligence, drones, and 5G to transform shopping on every dimension. And as a result, shopping is becoming dematerialized, demonetized, democratized, and delocalized… a top-to-bottom transformation of the retail world.

Welcome to Part 1 of our series on the future of retail, a deep-dive into AI and its far-reaching implications.

Let’s dive in.

A Day in the Life of 2029
Welcome to April 21, 2029, a sunny day in Dallas. You’ve got a fundraising luncheon tomorrow, but nothing to wear. The last thing you want to do is spend the day at the mall.

No sweat. Your body image data is still current, as you were scanned only a week ago. Put on your VR headset and have a conversation with your AI. “It’s time to buy a dress for tomorrow’s event” is all you have to say. In a moment, you’re teleported to a virtual clothing store. Zero travel time. No freeway traffic, parking hassles, or angry hordes wielding baby strollers.

Instead, you’ve entered your own personal clothing store. Everything is in your exact size…. And I mean everything. The store has access to nearly every designer and style on the planet. Ask your AI to show you what’s hot in Shanghai, and presto—instant fashion show. Every model strutting down the runway looks exactly like you, only dressed in Shanghai’s latest.

When you’re done selecting an outfit, your AI pays the bill. And as your new clothes are being 3D printed at a warehouse—before speeding your way via drone delivery—a digital version has been added to your personal inventory for use at future virtual events.

The cost? Thanks to an era of no middlemen, less than half of what you pay in stores today. Yet this future is not all that far off…

Digital Assistants
Let’s begin with the basics: the act of turning desire into purchase.

Most of us navigate shopping malls or online marketplaces alone, hoping to stumble across the right item and fit. But if you’re lucky enough to employ a personal assistant, you have the luxury of describing what you want to someone who knows you well enough to buy that exact right thing most of the time.

For most of us who don’t, enter the digital assistant.

Right now, the four horsemen of the retail apocalypse are waging war for our wallets. Amazon’s Alexa, Google’s Now, Apple’s Siri, and Alibaba’s Tmall Genie are going head-to-head in a battle to become the platform du jour for voice-activated, AI-assisted commerce.

For baby boomers who grew up watching Captain Kirk talk to the Enterprise’s computer on Star Trek, digital assistants seem a little like science fiction. But for millennials, it’s just the next logical step in a world that is auto-magical.

And as those millennials enter their consumer prime, revenue from products purchased via voice-driven commands is projected to leap from today’s US$2 billion to US$8 billion by 2023.

We are already seeing a major change in purchasing habits. On average, consumers using Amazon Echo spent more than standard Amazon Prime customers: US$1,700 versus US$1,300.

And as far as an AI fashion advisor goes, those too are here, courtesy of both Alibaba and Amazon. During its annual Singles’ Day (November 11) shopping festival, Alibaba’s FashionAI concept store uses deep learning to make suggestions based on advice from human fashion experts and store inventory, driving a significant portion of the day’s US$25 billion in sales.

Similarly, Amazon’s shopping algorithm makes personalized clothing recommendations based on user preferences and social media behavior.

Customer Service
But AI is disrupting more than just personalized fashion and e-commerce. Its next big break will take place in the customer service arena.

According to a recent Zendesk study, good customer service increases the possibility of a purchase by 42 percent, while bad customer service translates into a 52 percent chance of losing that sale forever. This means more than half of us will stop shopping at a store due to a single disappointing customer service interaction. These are significant financial stakes. They’re also problems perfectly suited for an AI solution.

During the 2018 Google I/O conference, CEO Sundar Pichai demoed the Google Duplex, their next generation digital assistant. Pichai played the audience a series of pre-recorded phone calls made by Google Duplex. The first call made a reservation at a restaurant, the second one booked a haircut appointment, amusing the audience with a long “hmmm” mid-call.

In neither case did the person on the other end of the phone have any idea they were talking to an AI. The system’s success speaks to how seamlessly AI can blend into our retail lives and how convenient it will continue to make them. The same technology Pichai demonstrated that can make phone calls for consumers can also answer phones for retailers—a development that’s unfolding in two different ways:

(1) Customer service coaches: First, for organizations interested in keeping humans involved, there’s Beyond Verbal, a Tel Aviv-based startup that has built an AI customer service coach. Simply by analyzing customer voice intonation, the system can tell whether the person on the phone is about to blow a gasket, is genuinely excited, or anything in between.

Based on research of over 70,000 subjects in more than 30 languages, Beyond Verbal’s app can detect 400 different markers of human moods, attitudes, and personality traits. Already it’s been integrated in call centers to help human sales agents understand and react to customer emotions, making those calls more pleasant, and also more profitable.

For example, by analyzing word choice and vocal style, Beyond Verbal’s system can tell what kind of shopper the person on the line actually is. If they’re an early adopter, the AI alerts the sales agent to offer them the latest and greatest. If they’re more conservative, it suggests items more tried-and-true.

(2) Replacing customer service agents: Second, companies like New Zealand’s Soul Machines are working to replace human customer service agents altogether. Powered by IBM’s Watson, Soul Machines builds lifelike customer service avatars designed for empathy, making them one of many helping to pioneer the field of emotionally intelligent computing.

With their technology, 40 percent of all customer service interactions are now resolved with a high degree of satisfaction, no human intervention needed. And because the system is built using neural nets, it’s continuously learning from every interaction—meaning that percentage will continue to improve.

The number of these interactions continues to grow as well. Software manufacturer Autodesk now includes a Soul Machine avatar named AVA (Autodesk Virtual Assistant) in all of its new offerings. She lives in a small window on the screen, ready to soothe tempers, troubleshoot problems, and forever banish those long tech support hold times.

For Daimler Financial Services, Soul Machines built an avatar named Sarah, who helps customers with arguably three of modernity’s most annoying tasks: financing, leasing, and insuring a car.

This isn’t just about AI—it’s about AI converging with additional exponentials. Add networks and sensors to the story and it raises the scale of disruption, upping the FQ—the frictionless quotient—in our frictionless shopping adventure.

Final Thoughts
AI makes retail cheaper, faster, and more efficient, touching everything from customer service to product delivery. It also redefines the shopping experience, making it frictionless and—once we allow AI to make purchases for us—ultimately invisible.

Prepare for a future in which shopping is dematerialized, demonetized, democratized, and delocalized—otherwise known as “the end of malls.”

Of course, if you wait a few more years, you’ll be able to take an autonomous flying taxi to Westfield’s Destination 2028—so perhaps today’s converging exponentials are not so much spelling the end of malls but rather the beginning of an experience economy far smarter, more immersive, and whimsically imaginative than today’s shopping centers.

Either way, it’s a top-to-bottom transformation of the retail world.

Over the coming blog series, we will continue our discussion of the future of retail. Stay tuned to learn new implications for your business and how to future-proof your company in an age of smart, ultra-efficient, experiential retail.

Want a copy of my next book? If you’ve enjoyed this blogified snippet of The Future is Faster Than You Think, sign up here to be eligible for an early copy and access up to $800 worth of pre-launch giveaways!

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Pexels from Pixabay Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots

#436218 An AI Debated Its Own Potential for Good ...

Artificial intelligence is going to overhaul the way we live and work. But will the changes it brings be for the better? As the technology slowly develops (let’s remember that right now, we’re still very much in the narrow AI space and nowhere near an artificial general intelligence), whether it will end up doing us more harm than good is a question at the top of everyone’s mind.

What kind of response might we get if we posed this question to an AI itself?

Last week at the Cambridge Union in England, IBM did just that. Its Project Debater (an AI that narrowly lost a debate to human debating champion Harish Natarajan in February) gave the opening arguments in a debate about the promise and peril of artificial intelligence.

Critical thinking, linking different lines of thought, and anticipating counter-arguments are all valuable debating skills that humans can practice and refine. While these skills are tougher for an AI to get good at since they often require deeper contextual understanding, AI does have a major edge over humans in absorbing and analyzing information. In the February debate, Project Debater used IBM’s cloud computing infrastructure to read hundreds of millions of documents and extract relevant details to construct an argument.

This time around, Debater looked through 1,100 arguments for or against AI. The arguments were submitted to IBM by the public during the week prior to the debate, through a website set up for that purpose. Of the 1,100 submissions, the AI classified 570 as anti-AI, or of the opinion that the technology will bring more harm to humanity than good. 511 arguments were found to be pro-AI, and the rest were irrelevant to the topic at hand.

Debater grouped the arguments into five themes; the technology’s ability to take over dangerous or monotonous jobs was a pro-AI theme, and on the flip side was its potential to perpetuate the biases of its creators. “AI companies still have too little expertise on how to properly assess datasets and filter out bias,” the tall black box that houses Project Debater said. “AI will take human bias and will fixate it for generations.”
After Project Debater kicked off the debate by giving opening arguments for both sides, two teams of people took over, elaborating on its points and coming up with their own counter-arguments.

In the end, an audience poll voted in favor of the pro-AI side, but just barely; 51.2 percent of voters felt convinced that AI can help us more than it can hurt us.

The software’s natural language processing was able to identify racist, obscene, or otherwise inappropriate comments and weed them out as being irrelevant to the debate. But it also repeated the same arguments multiple times, and mixed up a statement about bias as being pro-AI rather than anti-AI.

IBM has been working on Project Debater for over six years, and though it aims to iron out small glitches like these, the system’s goal isn’t to ultimately outwit and defeat humans. On the contrary, the AI is meant to support our decision-making by taking in and processing huge amounts of information in a nuanced way, more quickly than we ever could.

IBM engineer Noam Slonim envisions Project Debater’s tech being used, for example, by a government seeking citizens’ feedback about a new policy. “This technology can help to establish an interesting and effective communication channel between the decision maker and the people that are going to be impacted by the decision,” he said.

As for the question of whether AI will do more good or harm, perhaps Sylvie Delacroix put it best. A professor of law and ethics at the University of Birmingham who argued on the pro-AI side of the debate, she pointed out that the impact AI will have depends on the way we design it, saying “AI is only as good as the data it has been fed.”

She’s right; rather than asking what sort of impact AI will have on humanity, we should start by asking what sort of impact we want it to have. The people working on AI—not AIs themselves—are ultimately responsible for how much good or harm will be done.

Image Credit: IBM Project Debater at Cambridge Union Society, photo courtesy of IBM Research Continue reading

Posted in Human Robots

#436215 Help Rescuers Find Missing Persons With ...

There’s a definite sense that robots are destined to become a critical part of search and rescue missions and disaster relief efforts, working alongside humans to help first responders move faster and more efficiently. And we’ve seen all kinds of studies that include the claim “this robot could potentially help with disaster relief,” to varying degrees of plausibility.

But it takes a long time, and a lot of extra effort, for academic research to actually become anything useful—especially for first responders, where there isn’t a lot of financial incentive for further development.

It turns out that if you actually ask first responders what they most need for disaster relief, they’re not necessarily interested in the latest and greatest robotic platform or other futuristic technology. They’re using commercial off-the-shelf drones, often consumer-grade ones, because they’re simple and cheap and great at surveying large areas. The challenge is doing something useful with all of the imagery that these drones collect. Computer vision algorithms could help with that, as long as those algorithms are readily accessible and nearly effortless to use.

The IEEE Robotics and Automation Society and the Center for Robotic-Assisted Search and Rescue (CRASAR) at Texas A&M University have launched a contest to bridge this gap between the kinds of tools that roboticists and computer vision researchers might call “basic” and a system that’s useful to first responders in the field. It’s a simple and straightforward idea, and somewhat surprising that no one had thought of it before now. And if you can develop such a system, it’s worth some cash.

CRASAR does already have a Computer Vision Emergency Response Toolkit (created right after Hurricane Harvey), which includes a few pixel filters and some edge and corner detectors. Through this contest, you can get paid your share of a $3,000 prize pool for adding some other excessively basic tools, including:

Image enhancement through histogram equalization, which can be applied to electro-optical (visible light cameras) and thermal imagery

Color segmentation for a range

Grayscale segmentation for a range in a thermal image

If it seems like this contest is really not that hard, that’s because it isn’t. “The first thing to understand about this contest is that strictly speaking, it’s really not that hard,” says Robin Murphy, director of CRASAR. “This contest isn’t necessarily about coming up with algorithms that are brand new, or even state-of-the-art, but rather algorithms that are functional and reliable and implemented in a way that’s immediately [usable] by inexperienced users in the field.”

Murphy readily admits that some of what needs to be done is not particularly challenging at all, but that’s not the point—the point is to make these functionalities accessible to folks who have better things to do than solve these problems themselves, as Murphy explains.

“A lot of my research is driven by problems that I’ve seen in the field that you’d think somebody would have solved, but apparently not. More than half of this is available in OpenCV, but who’s going to find it, download it, learn Python, that kind of thing? We need to get these tools into an open framework. We’re happy if you take libraries that already exist (just don’t steal code)—not everything needs to be rewritten from scratch. Just use what’s already there. Some of it may seem too simple, because it IS that simple. It already exists and you just need to move some code around.”

If you want to get very slightly more complicated, there’s a second category that involves a little bit of math:

Coders must provide a system that does the following for each nadir image in a set:

Reads the geotag embedded in the .jpg
Overlays a USNG grid for a user-specified interval (e.g., every 50, 100, or 200 meters)
Gives the GPS coordinates of each pixel if a cursor is rolled over the image
Given a set of images with the GPS or USNG coordinate and a bounding box, finds all images in the set that have a pixel intersecting that location

The final category awards prizes to anyone who comes up with anything else that turns out to be useful. Or, more specifically, “entrants can submit any algorithm they believe will be of value.” Whether or not it’s actually of value will be up to a panel of judges that includes both first responders and computer vision experts. More detailed rules can be found here, along with sample datasets that you can use for testing.

The contest deadline is 16 December, so you’ve got about a month to submit an entry. Winners will be announced at the beginning of January. Continue reading

Posted in Human Robots