Tag Archives: surgery
#431603 What We Can Learn From the Second Life ...
For every new piece of technology that gets developed, you can usually find people saying it will never be useful. The president of the Michigan Savings Bank in 1903, for example, said, “The horse is here to stay but the automobile is only a novelty—a fad.” It’s equally easy to find people raving about whichever new technology is at the peak of the Gartner Hype Cycle, which tracks the buzz around these newest developments and attempts to temper predictions. When technologies emerge, there are all kinds of uncertainties, from the actual capacity of the technology to its use cases in real life to the price tag.
Eventually the dust settles, and some technologies get widely adopted, to the extent that they can become “invisible”; people take them for granted. Others fall by the wayside as gimmicky fads or impractical ideas. Picking which horses to back is the difference between Silicon Valley millions and Betamax pub-quiz-question obscurity. For a while, it seemed that Google had—for once—backed the wrong horse.
Google Glass emerged from Google X, the ubiquitous tech giant’s much-hyped moonshot factory, where highly secretive researchers work on the sci-fi technologies of the future. Self-driving cars and artificial intelligence are the more mundane end for an organization that apparently once looked into jetpacks and teleportation.
The original smart glasses, Google began selling Google Glass in 2013 for $1,500 as prototypes for their acolytes, around 8,000 early adopters. Users could control the glasses with a touchpad, or, activated by tilting the head back, with voice commands. Audio relay—as with several wearable products—is via bone conduction, which transmits sound by vibrating the skull bones of the user. This was going to usher in the age of augmented reality, the next best thing to having a chip implanted directly into your brain.
On the surface, it seemed to be a reasonable proposition. People had dreamed about augmented reality for a long time—an onboard, JARVIS-style computer giving you extra information and instant access to communications without even having to touch a button. After smartphone ubiquity, it looked like a natural step forward.
Instead, there was a backlash. People may be willing to give their data up to corporations, but they’re less pleased with the idea that someone might be filming them in public. The worst aspect of smartphones is trying to talk to people who are distractedly scrolling through their phones. There’s a famous analogy in Revolutionary Road about an old couple’s loveless marriage: the husband tunes out his wife’s conversation by turning his hearing aid down to zero. To many, Google Glass seemed to provide us with a whole new way to ignore each other in favor of our Twitter feeds.
Then there’s the fact that, regardless of whether it’s because we’re not used to them, or if it’s a more permanent feature, people wearing AR tech often look very silly. Put all this together with a lack of early functionality, the high price (do you really feel comfortable wearing a $1,500 computer?), and a killer pun for the users—Glassholes—and the final recipe wasn’t great for Google.
Google Glass was quietly dropped from sale in 2015 with the ominous slogan posted on Google’s website “Thanks for exploring with us.” Reminding the Glass users that they had always been referred to as “explorers”—beta-testing a product, in many ways—it perhaps signaled less enthusiasm for wearables than the original, Google Glass skydive might have suggested.
In reality, Google went back to the drawing board. Not with the technology per se, although it has improved in the intervening years, but with the uses behind the technology.
Under what circumstances would you actually need a Google Glass? When would it genuinely be preferable to a smartphone that can do many of the same things and more? Beyond simply being a fashion item, which Google Glass decidedly was not, even the most tech-evangelical of us need a convincing reason to splash $1,500 on a wearable computer that’s less socially acceptable and less easy to use than the machine you’re probably reading this on right now.
Enter the Google Glass Enterprise Edition.
Piloted in factories during the years that Google Glass was dormant, and now roaring back to life and commercially available, the Google Glass relaunch got under way in earnest in July of 2017. The difference here was the specific audience: workers in factories who need hands-free computing because they need to use their hands at the same time.
In this niche application, wearable computers can become invaluable. A new employee can be trained with pre-programmed material that explains how to perform actions in real time, while instructions can be relayed straight into a worker’s eyeline without them needing to check a phone or switch to email.
Medical devices have long been a dream application for Google Glass. You can imagine a situation where people receive real-time information during surgery, or are augmented by artificial intelligence that provides additional diagnostic information or questions in response to a patient’s symptoms. The quest to develop a healthcare AI, which can provide recommendations in response to natural language queries, is on. The famously untidy doctor’s handwriting—and the associated death toll—could be avoided if the glasses could take dictation straight into a patient’s medical records. All of this is far more useful than allowing people to check Facebook hands-free while they’re riding the subway.
Google’s “Lens” application indicates another use for Google Glass that hadn’t quite matured when the original was launched: the Lens processes images and provides information about them. You can look at text and have it translated in real time, or look at a building or sign and receive additional information. Image processing, either through neural networks hooked up to a cloud database or some other means, is the frontier that enables driverless cars and similar technology to exist. Hook this up to a voice-activated assistant relaying information to the user, and you have your killer application: real-time annotation of the world around you. It’s this functionality that just wasn’t ready yet when Google launched Glass.
Amazon’s recent announcement that they want to integrate Alexa into a range of smart glasses indicates that the tech giants aren’t ready to give up on wearables yet. Perhaps, in time, people will become used to voice activation and interaction with their machines, at which point smart glasses with bone conduction will genuinely be more convenient than a smartphone.
But in many ways, the real lesson from the initial failure—and promising second life—of Google Glass is a simple question that developers of any smart technology, from the Internet of Things through to wearable computers, must answer. “What can this do that my smartphone can’t?” Find your answer, as the Enterprise Edition did, as Lens might, and you find your product.
Image Credit: Hattanas / Shutterstock.com Continue reading
#431427 Why the Best Healthcare Hacks Are the ...
Technology has the potential to solve some of our most intractable healthcare problems. In fact, it’s already doing so, with inventions getting us closer to a medical Tricorder, and progress toward 3D printed organs, and AIs that can do point-of-care diagnosis.
No doubt these applications of cutting-edge tech will continue to push the needle on progress in medicine, diagnosis, and treatment. But what if some of the healthcare hacks we need most aren’t high-tech at all?
According to Dr. Darshak Sanghavi, this is exactly the case. In a talk at Singularity University’s Exponential Medicine last week, Sanghavi told the audience, “We often think in extremely complex ways, but I think a lot of the improvements in health at scale can be done in an analog way.”
Sanghavi is the chief medical officer and senior vice president of translation at OptumLabs, and was previously director of preventive and population health at the Center for Medicare and Medicaid Innovation, where he oversaw the development of large pilot programs aimed at improving healthcare costs and quality.
“How can we improve health at scale, not for only a small number of people, but for entire populations?” Sanghavi asked. With programs that benefit a small group of people, he explained, what tends to happen is that the average health of a population improves, but the disparities across the group worsen.
“My mantra became, ‘The denominator is everybody,’” he said. He shared details of some low-tech but crucial fixes he believes could vastly benefit the US healthcare system.
1. Regulatory Hacking
Healthcare regulations are ultimately what drive many aspects of patient care, for better or worse. Worse because the mind-boggling complexity of regulations (exhibit A: the Affordable Care Act is reportedly about 20,000 pages long) can make it hard for people to get the care they need at a cost they can afford, but better because, as Sanghavi explained, tweaking these regulations in the right way can result in across-the-board improvements in a given population’s health.
An adjustment to Medicare hospitalization rules makes for a relevant example. The code was updated to state that if people who left the hospital were re-admitted within 30 days, that hospital had to pay a penalty. The result was hospitals taking more care to ensure patients were released not only in good health, but also with a solid understanding of what they had to do to take care of themselves going forward. “Here, arguably the writing of a few lines of regulatory code resulted in a remarkable decrease in 30-day re-admissions, and the savings of several billion dollars,” Sanghavi said.
2. Long-Term Focus
It’s easy to focus on healthcare hacks that have immediate, visible results—but what about fixes whose benefits take years to manifest? How can we motivate hospitals, regulators, and doctors to take action when they know they won’t see changes anytime soon?
“I call this the reality TV problem,” Sanghavi said. “Reality shows don’t really care about who’s the most talented recording artist—they care about getting the most viewers. That is exactly how we think about health care.”
Sanghavi’s team wanted to address this problem for heart attacks. They found they could reliably determine someone’s 10-year risk of having a heart attack based on a simple risk profile. Rather than monitoring patients’ cholesterol, blood pressure, weight, and other individual factors, the team took the average 10-year risk across entire provider panels, then made providers responsible for controlling those populations.
“Every percentage point you lower that risk, by hook or by crook, you get some people to stop smoking, you get some people on cholesterol medication. It’s patient-centered decision-making, and the provider then makes money. This is the world’s first predictive analytic model, at scale, that’s actually being paid for at scale,” he said.
3. Aligned Incentives
If hospitals are held accountable for the health of the communities they’re based in, those hospitals need to have the right incentives to follow through. “Hospitals have to spend money on community benefit, but linking that benefit to a meaningful population health metric can catalyze significant improvements,” Sanghavi said.
Darshak Sanghavi speaking at Singularity University’s 2017 Exponential Medicine Summit in San Diego, CA.
He used smoking cessation as an example. His team designed a program where hospitals were given a score (determined by the Centers for Disease Control and Prevention) based on the smoking rate in the counties where they’re located, then given monetary incentives to improve their score. Improving their score, in turn, resulted in better health for their communities, which meant fewer patients to treat for smoking-related health problems.
4. Social Determinants of Health
Social determinants of health include factors like housing, income, family, and food security. The answer to getting people to pay attention to these factors at scale, and creating aligned incentives, Sanghavi said, is “Very simple. We just have to measure it to start with, and measure it universally.”
His team was behind a $157 million pilot program called Accountable Health Communities that went live this year. The program requires all Medicare and Medicaid beneficiaries get screened for various social determinants of health. With all that data being collected, analysts can pinpoint local trends, then target funds to address the underlying problem, whether it’s job training, drug use, or nutritional education. “You’re then free to invest the dollars where they’re needed…this is how we can improve health at scale, with very simple changes in the incentive structures that are created,” he said.
5. ‘Securitizing’ Public Health
Sanghavi’s final point tied back to his discussion of aligning incentives. As misguided as it may seem, the reality is that financial incentives can make a huge difference in healthcare outcomes, from both a patient and a provider perspective.
Sanghavi’s team did an experiment in which they created outcome benchmarks for three major health problems that exist across geographically diverse areas: smoking, adolescent pregnancy, and binge drinking. The team proposed measuring the baseline of these issues then creating what they called a social impact bond. If communities were able to lower their frequency of these conditions by a given percent within a stated period of time, they’d get paid for it.
“What that did was essentially say, ‘you have a buyer for this outcome if you can achieve it,’” Sanghavi said. “And you can try to get there in any way you like.” The program is currently in CMS clearance.
AI and Robots Not Required
Using robots to perform surgery and artificial intelligence to diagnose disease will undoubtedly benefit doctors and patients around the US and the world. But Sanghavi’s talk made it clear that our healthcare system needs much more than this, and that improving population health on a large scale is really a low-tech project—one involving more regulatory and financial innovation than technological innovation.
“The things that get measured are the things that get changed,” he said. “If we choose the right outcomes to predict long-term benefit, and we pay for those outcomes, that’s the way to make progress.”
Image Credit: Wonderful Nature / Shutterstock.com Continue reading
#431022 Robots and AI Will Take Over These 3 ...
We’re no stranger to robotics in the medical field. Robot-assisted surgery is becoming more and more common. Many training programs are starting to include robotic and virtual reality scenarios to provide hands-on training for students without putting patients at risk.
With all of these advances in medical robotics, three niches stand out above the rest: surgery, medical imaging, and drug discovery. How have robotics already begun to exert their influence on these practices, and how will they change them for good?
Robot-Assisted Surgery
Robot-assisted surgery was first documented in 1985, when it was used for a neurosurgical biopsy. This led to the use of robotics in a number of similar surgeries, both laparoscopic and traditional operations. The FDA didn’t approve robotic surgery tools until 2000, when the da Vinci Surgery system hit the market.
The robot-assisted surgery market is expected to grow steadily into 2023 and potentially beyond. The only thing that might stand in the way of this growth is the cost of the equipment. The initial investment may prevent small practices from purchasing the necessary devices.
Medical Imaging
The key to successful medical imaging isn’t the equipment itself. It’s being able to interpret the information in the images. Medical images are some of the most information-dense pieces of data in the medical field and can reveal so much more than a basic visual inspection can.
Robotics and, more specifically, artificial intelligence programs like IBM Watson can help interpret these images more efficiently and accurately. By allowing an AI or basic machine learning program to study the medical images, researchers can find patterns and make more accurate diagnoses than ever before.
Drug Discovery
Drug discovery is a long and often tedious process that includes years of testing and assessment. Artificial intelligence, machine learning and predictive algorithms could help speed up this system.
Imagine if researchers could input the kind of medicine they’re trying to make and the kind of symptoms they’re trying to treat into a computer and let it do the rest. With robotics, that may someday be possible.
This isn’t a perfect solution yet—these systems require massive amounts of data before they can start making decisions or predictions. By feeding data into the cloud where these programs can access it, researchers can take the first steps towards setting up a functional database.
Another benefit of these AI programs is that they might see connections humans would never have thought of. People can make those leaps, but the chances are much lower, and it takes much longer if it happens at all. Simply put, we’re not capable of processing the sheer amount of data that computers can process.
This isn’t a field where we’re worrying about robots stealing jobs.
Quite the opposite, in fact—we want robots to become commonly-used tools that can help improve patient care and surgical outcomes.
A human surgeon might have intuition, but they’ll never have the steadiness that a pair of robotic hands can provide or the data-processing capabilities of a machine learning algorithm. If we let them, these tools could change the way we look at medicine.
Image Credit: Intuitive Surgical Continue reading
#430015 Open wide! Dental students get to ...
If you don’t feel like being a Guinea pig for dentists in-training, you’re not alone. Enters the Japanese robot with a complete set of teeth, that senses pain and allows dental students to hone their skills before moving on to … Continue reading