Tag Archives: summit

#435769 The Ultimate Optimization Problem: How ...

Lucas Joppa thinks big. Even while gazing down into his cup of tea in his modest office on Microsoft’s campus in Redmond, Washington, he seems to see the entire planet bobbing in there like a spherical tea bag.

As Microsoft’s first chief environmental officer, Joppa came up with the company’s AI for Earth program, a five-year effort that’s spending US $50 million on AI-powered solutions to global environmental challenges.

The program is not just about specific deliverables, though. It’s also about mindset, Joppa told IEEE Spectrum in an interview in July. “It’s a plea for people to think about the Earth in the same way they think about the technologies they’re developing,” he says. “You start with an objective. So what’s our objective function for Earth?” (In computer science, an objective function describes the parameter or parameters you are trying to maximize or minimize for optimal results.)

Photo: Microsoft

Lucas Joppa

AI for Earth launched in December 2017, and Joppa’s team has since given grants to more than 400 organizations around the world. In addition to receiving funding, some grantees get help from Microsoft’s data scientists and access to the company’s computing resources.

In a wide-ranging interview about the program, Joppa described his vision of the “ultimate optimization problem”—figuring out which parts of the planet should be used for farming, cities, wilderness reserves, energy production, and so on.

Every square meter of land and water on Earth has an infinite number of possible utility functions. It’s the job of Homo sapiens to describe our overall objective for the Earth. Then it’s the job of computers to produce optimization results that are aligned with the human-defined objective.

I don’t think we’re close at all to being able to do this. I think we’re closer from a technology perspective—being able to run the model—than we are from a social perspective—being able to make decisions about what the objective should be. What do we want to do with the Earth’s surface?

Such questions are increasingly urgent, as climate change has already begun reshaping our planet and our societies. Global sea and air surface temperatures have already risen by an average of 1 degree Celsius above preindustrial levels, according to the Intergovernmental Panel on Climate Change.

Today, people all around the world participated in a “climate strike,” with young people leading the charge and demanding a global transition to renewable energy. On Monday, world leaders will gather in New York for the United Nations Climate Action Summit, where they’re expected to present plans to limit warming to 1.5 degrees Celsius.

Joppa says such summit discussions should aim for a truly holistic solution.

We talk about how to solve climate change. There’s a higher-order question for society: What climate do we want? What output from nature do we want and desire? If we could agree on those things, we could put systems in place for optimizing our environment accordingly. Instead we have this scattered approach, where we try for local optimization. But the sum of local optimizations is never a global optimization.

There’s increasing interest in using artificial intelligence to tackle global environmental problems. New sensing technologies enable scientists to collect unprecedented amounts of data about the planet and its denizens, and AI tools are becoming vital for interpreting all that data.

The 2018 report “Harnessing AI for the Earth,” produced by the World Economic Forum and the consulting company PwC, discusses ways that AI can be used to address six of the world’s most pressing environmental challenges (climate change, biodiversity, and healthy oceans, water security, clean air, and disaster resilience).

Many of the proposed applications involve better monitoring of human and natural systems, as well as modeling applications that would enable better predictions and more efficient use of natural resources.

Joppa says that AI for Earth is taking a two-pronged approach, funding efforts to collect and interpret vast amounts of data alongside efforts that use that data to help humans make better decisions. And that’s where the global optimization engine would really come in handy.

For any location on earth, you should be able to go and ask: What’s there, how much is there, and how is it changing? And more importantly: What should be there?

On land, the data is really only interesting for the first few hundred feet. Whereas in the ocean, the depth dimension is really important.

We need a planet with sensors, with roving agents, with remote sensing. Otherwise our decisions aren’t going to be any good.

AI for Earth isn’t going to create such an online portal within five years, Joppa stresses. But he hopes the projects that he’s funding will contribute to making such a portal possible—eventually.

We’re asking ourselves: What are the fundamental missing layers in the tech stack that would allow people to build a global optimization engine? Some of them are clear, some are still opaque to me.

By the end of five years, I’d like to have identified these missing layers, and have at least one example of each of the components.

Some of the projects that AI for Earth has funded seem to fit that desire. Examples include SilviaTerra, which used satellite imagery and AI to create a map of the 92 billion trees in forested areas across the United States. There’s also OceanMind, a non-profit that detects illegal fishing and helps marine authorities enforce compliance. Platforms like Wildbook and iNaturalist enable citizen scientists to upload pictures of animals and plants, aiding conservation efforts and research on biodiversity. And FarmBeats aims to enable data-driven agriculture with low-cost sensors, drones, and cloud services.

It’s not impossible to imagine putting such services together into an optimization engine that knows everything about the land, the water, and the creatures who live on planet Earth. Then we’ll just have to tell that engine what we want to do about it.

Editor’s note: This story is published in cooperation with more than 250 media organizations and independent journalists that have focused their coverage on climate change ahead of the UN Climate Action Summit. IEEE Spectrum’s participation in the Covering Climate Now partnership builds on our past reporting about this global issue. Continue reading

Posted in Human Robots

#435687 Humanoid Robots Teach Coping Skills to ...

Photo: Rob Felt

IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.

THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.

Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.

In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.

“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.

It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.

Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.

The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.

In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.

FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.

“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.

“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”

DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.

“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”

Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.

“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”

ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.

“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”

Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.

Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.

“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.

Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.

ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”

She kept the membership as a grad student because of the discounted rates members receive on conferences.

Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”

Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.

“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading

Posted in Human Robots

#435676 Intel’s Neuromorphic System Hits 8 ...

At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.

Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.

“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.

Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”

Photo: Tim Herman/Intel Corporation

One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.

Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.

For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)

(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)

Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.

Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)

Photo: Tim Herman/Intel Corporation

A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.

Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading

Posted in Human Robots

#435528 The Time for AI Is Now. Here’s Why

You hear a lot these days about the sheer transformative power of AI.

There’s pure intelligence: DeepMind’s algorithms readily beat humans at Go and StarCraft, and DeepStack triumphs over humans at no-limit hold’em poker. Often, these silicon brains generate gameplay strategies that don’t resemble anything from a human mind.

There’s astonishing speed: algorithms routinely surpass radiologists in diagnosing breast cancer, eye disease, and other ailments visible from medical imaging, essentially collapsing decades of expert training down to a few months.

Although AI’s silent touch is mainly felt today in the technological, financial, and health sectors, its impact across industries is rapidly spreading. At the Singularity University Global Summit in San Francisco this week Neil Jacobstein, Chair of AI and Robotics, painted a picture of a better AI-powered future for humanity that is already here.

Thanks to cloud-based cognitive platforms, sophisticated AI tools like deep learning are no longer relegated to academic labs. For startups looking to tackle humanity’s grand challenges, the tools to efficiently integrate AI into their missions are readily available. The progress of AI is massively accelerating—to the point you need help from AI to track its progress, joked Jacobstein.

Now is the time to consider how AI can impact your industry, and in the process, begin to envision a beneficial relationship with our machine coworkers. As Jacobstein stressed in his talk, the future of a brain-machine mindmeld is a collaborative intelligence that augments our own. “AI is reinventing the way we invent,” he said.

AI’s Rapid Revolution
Machine learning and other AI-based methods may seem academic and abstruse. But Jacobstein pointed out that there are already plenty of real-world AI application frameworks.

Their secret? Rather than coding from scratch, smaller companies—with big visions—are tapping into cloud-based solutions such as Google’s TensorFlow, Microsoft’s Azure, or Amazon’s AWS to kick off their AI journey. These platforms act as all-in-one solutions that not only clean and organize data, but also contain built-in security and drag-and-drop coding that allow anyone to experiment with complicated machine learning algorithms.

Google Cloud’s Anthos, for example, lets anyone migrate data from other servers—IBM Watson or AWS, for example—so users can leverage different computing platforms and algorithms to transform data into insights and solutions.

Rather than coding from scratch, it’s already possible to hop onto a platform and play around with it, said Jacobstein. That’s key: this democratization of AI is how anyone can begin exploring solutions to problems we didn’t even know we had, or those long thought improbable.

The acceleration is only continuing. Much of AI’s mind-bending pace is thanks to a massive infusion of funding. Microsoft recently injected $1 billion into OpenAI, the Elon Musk venture that engineers socially responsible artificial general intelligence (AGI).

The other revolution is in hardware, and Google, IBM, and NVIDIA—among others—are racing to manufacture computing chips tailored to machine learning.

Democratizing AI is like the birth of the printing press. Mechanical printing allowed anyone to become an author; today, an iPhone lets anyone film a movie masterpiece.

However, this diffusion of AI into the fabric of our lives means tech explorers need to bring skepticism to their AI solutions, giving them a dose of empathy, nuance, and humanity.

A Path Towards Ethical AI
The democratization of AI is a double-edged sword: as more people wield the technology’s power in real-world applications, problems embedded in deep learning threaten to disrupt those very judgment calls.

Much of the press on the dangers of AI focuses on superintelligence—AI that’s more adept at learning than humans—taking over the world, said Jacobstein. But the near-term threat, and far more insidious, is in humans misusing the technology.

Deepfakes, for example, allow AI rookies to paste one person’s head on a different body or put words into a person’s mouth. As the panel said, it pays to think of AI as a cybersecurity problem, one with currently shaky accountability and complexity, and one that fails at diversity and bias.

Take bias. Thanks to progress in natural language processing, Google Translate works nearly perfectly today, so much so that many consider the translation problem solved. Not true, the panel said. One famous example is how the algorithm translates gender-neutral terms like “doctor” into “he” and “nurse” into “she.”

These biases reflect our own, and it’s not just a data problem. To truly engineer objective AI systems, ones stripped of our society’s biases, we need to ask who is developing these systems, and consult those who will be impacted by the products. In addition to gender, racial bias is also rampant. For example, one recent report found that a supposedly objective crime-predicting system was trained on falsified data, resulting in outputs that further perpetuate corrupt police practices. Another study from Google just this month found that their hate speech detector more often labeled innocuous tweets from African-Americans as “obscene” compared to tweets from people of other ethnicities.

We often think of building AI as purely an engineering job, the panelists agreed. But similar to gene drives, germ-line genome editing, and other transformative—but dangerous—tools, AI needs to grow under the consultation of policymakers and other stakeholders. It pays to start young: educating newer generations on AI biases will mold malleable minds early, alerting them to the problem of bias and potentially mitigating risks.

As panelist Tess Posner from AI4ALL said, AI is rocket fuel for ambition. If young minds set out using the tools of AI to tackle their chosen problems, while fully aware of its inherent weaknesses, we can begin to build an AI-embedded future that is widely accessible and inclusive.

The bottom line: people who will be impacted by AI need to be in the room at the conception of an AI solution. People will be displaced by the new technology, and ethical AI has to consider how to mitigate human suffering during the transition. Just because AI looks like “magic fairy dust doesn’t mean that you’re home free,” the panelists said. You, the sentient human, bear the burden of being responsible for how you decide to approach the technology.

The time for AI is now. Let’s make it ethical.

Image Credit: GrAI / Shutterstock.com Continue reading

Posted in Human Robots

#435520 These Are the Meta-Trends Shaping the ...

Life is pretty different now than it was 20 years ago, or even 10 years ago. It’s sort of exciting, and sort of scary. And hold onto your hat, because it’s going to keep changing—even faster than it already has been.

The good news is, maybe there won’t be too many big surprises, because the future will be shaped by trends that have already been set in motion. According to Singularity University co-founder and XPRIZE founder Peter Diamandis, a lot of these trends are unstoppable—but they’re also pretty predictable.

At SU’s Global Summit, taking place this week in San Francisco, Diamandis outlined some of the meta-trends he believes are key to how we’ll live our lives and do business in the (not too distant) future.

Increasing Global Abundance
Resources are becoming more abundant all over the world, and fewer people are seeing their lives limited by scarcity. “It’s hard for us to realize this as we see crisis news, but what people have access to is more abundant than ever before,” Diamandis said. Products and services are becoming cheaper and thus available to more people, and having more resources then enables people to create more, thus producing even more resources—and so on.

Need evidence? The proportion of the world’s population living in extreme poverty is currently lower than it’s ever been. The average human life expectancy is longer than it’s ever been. The costs of day-to-day needs like food, energy, transportation, and communications are on a downward trend.

Take energy. In most of the world, though its costs are decreasing, it’s still a fairly precious commodity; we turn off our lights and our air conditioners when we don’t need them (ideally, both to save money and to avoid wastefulness). But the cost of solar energy has plummeted, and the storage capacity of batteries is improving, and solar technology is steadily getting more efficient. Bids for new solar power plants in the past few years have broken each other’s records for lowest cost per kilowatt hour.

“We’re not far from a penny per kilowatt hour for energy from the sun,” Diamandis said. “And if you’ve got energy, you’ve got water.” Desalination, for one, will be much more widely feasible once the cost of the energy needed for it drops.

Knowledge is perhaps the most crucial resource that’s going from scarce to abundant. All the world’s knowledge is now at the fingertips of anyone who has a mobile phone and an internet connection—and the number of people connected is only going to grow. “Everyone is being connected at gigabit connection speeds, and this will be transformative,” Diamandis said. “We’re heading towards a world where anyone can know anything at any time.”

Increasing Capital Abundance
It’s not just goods, services, and knowledge that are becoming more plentiful. Money is, too—particularly money for business. “There’s more and more capital available to invest in companies,” Diamandis said. As a result, more people are getting the chance to bring their world-changing ideas to life.

Venture capital investments reached a new record of $130 billion in 2018, up from $84 billion in 2017—and that’s just in the US. Globally, VC funding grew 21 percent from 2017 to a total of $207 billion in 2018.

Through crowdfunding, any person in any part of the world can present their idea and ask for funding. That funding can come in the form of a loan, an equity investment, a reward, or an advanced purchase of the proposed product or service. “Crowdfunding means it doesn’t matter where you live, if you have a great idea you can get it funded by people from all over the world,” Diamandis said.

All this is making a difference; the number of unicorns—privately-held startups valued at over $1 billion—currently stands at an astounding 360.

One of the reasons why the world is getting better, Diamandis believes, is because entrepreneurs are trying more crazy ideas—not ideas that are reasonable or predictable or linear, but ideas that seem absurd at first, then eventually end up changing the world.

Everyone and Everything, Connected
As already noted, knowledge is becoming abundant thanks to the proliferation of mobile phones and wireless internet; everyone’s getting connected. In the next decade or sooner, connectivity will reach every person in the world. 5G is being tested and offered for the first time this year, and companies like Google, SpaceX, OneWeb, and Amazon are racing to develop global satellite internet constellations, whether by launching 12,000 satellites, as SpaceX’s Starlink is doing, or by floating giant balloons into the stratosphere like Google’s Project Loon.

“We’re about to reach a period of time in the next four to six years where we’re going from half the world’s people being connected to the whole world being connected,” Diamandis said. “What happens when 4.2 billion new minds come online? They’re all going to want to create, discover, consume, and invent.”

And it doesn’t stop at connecting people. Things are becoming more connected too. “By 2020 there will be over 20 billion connected devices and more than one trillion sensors,” Diamandis said. By 2030, those projections go up to 500 billion and 100 trillion. Think about it: there’s home devices like refrigerators, TVs, dishwashers, digital assistants, and even toasters. There’s city infrastructure, from stoplights to cameras to public transportation like buses or bike sharing. It’s all getting smart and connected.

Soon we’ll be adding autonomous cars to the mix, and an unimaginable glut of data to go with them. Every turn, every stop, every acceleration will be a data point. Some cars already collect over 25 gigabytes of data per hour, Diamandis said, and car data is projected to generate $750 billion of revenue by 2030.

“You’re going to start asking questions that were never askable before, because the data is now there to be mined,” he said.

Increasing Human Intelligence
Indeed, we’ll have data on everything we could possibly want data on. We’ll also soon have what Diamandis calls just-in-time education, where 5G combined with artificial intelligence and augmented reality will allow you to learn something in the moment you need it. “It’s not going and studying, it’s where your AR glasses show you how to do an emergency surgery, or fix something, or program something,” he said.

We’re also at the beginning of massive investments in research working towards connecting our brains to the cloud. “Right now, everything we think, feel, hear, or learn is confined in our synaptic connections,” Diamandis said. What will it look like when that’s no longer the case? Companies like Kernel, Neuralink, Open Water, Facebook, Google, and IBM are all investing billions of dollars into brain-machine interface research.

Increasing Human Longevity
One of the most important problems we’ll use our newfound intelligence to solve is that of our own health and mortality, making 100 years old the new 60—then eventually, 120 or 150.

“Our bodies were never evolved to live past age 30,” Diamandis said. “You’d go into puberty at age 13 and have a baby, and by the time you were 26 your baby was having a baby.”

Seeing how drastically our lifespans have changed over time makes you wonder what aging even is; is it natural, or is it a disease? Many companies are treating it as one, and using technologies like senolytics, CRISPR, and stem cell therapy to try to cure it. Scaffolds of human organs can now be 3D printed then populated with the recipient’s own stem cells so that their bodies won’t reject the transplant. Companies are testing small-molecule pharmaceuticals that can stop various forms of cancer.

“We don’t truly know what’s going on inside our bodies—but we can,” Diamandis said. “We’re going to be able to track our bodies and find disease at stage zero.”

Chins Up
The world is far from perfect—that’s not hard to see. What’s less obvious but just as true is that we’re living in an amazing time. More people are coming together, and they have more access to information, and that information moves faster, than ever before.

“I don’t think any of us understand how fast the world is changing,” Diamandis said. “Most people are fearful about the future. But we should be excited about the tools we now have to solve the world’s problems.”

Image Credit: spainter_vfx / Shutterstock.com Continue reading

Posted in Human Robots