Tag Archives: study

#436119 How 3D Printing, Vertical Farming, and ...

Food. What we eat, and how we grow it, will be fundamentally transformed in the next decade.

Already, indoor farming is projected to be a US$40.25 billion industry by 2022, with a compound annual growth rate of 9.65 percent. Meanwhile, the food 3D printing industry is expected to grow at an even higher rate, averaging 50 percent annual growth.

And converging exponential technologies—from materials science to AI-driven digital agriculture—are not slowing down. Today’s breakthroughs will soon allow our planet to boost its food production by nearly 70 percent, using a fraction of the real estate and resources, to feed 9 billion by mid-century.

What you consume, how it was grown, and how it will end up in your stomach will all ride the wave of converging exponentials, revolutionizing the most basic of human needs.

Printing Food
3D printing has already had a profound impact on the manufacturing sector. We are now able to print in hundreds of different materials, making anything from toys to houses to organs. However, we are finally seeing the emergence of 3D printers that can print food itself.

Redefine Meat, an Israeli startup, wants to tackle industrial meat production using 3D printers that can generate meat, no animals required. The printer takes in fat, water, and three different plant protein sources, using these ingredients to print a meat fiber matrix with trapped fat and water, thus mimicking the texture and flavor of real meat.

Slated for release in 2020 at a cost of $100,000, their machines are rapidly demonetizing and will begin by targeting clients in industrial-scale meat production.

Anrich3D aims to take this process a step further, 3D printing meals that are customized to your medical records, heath data from your smart wearables, and patterns detected by your sleep trackers. The company plans to use multiple extruders for multi-material printing, allowing them to dispense each ingredient precisely for nutritionally optimized meals. Currently in an R&D phase at the Nanyang Technological University in Singapore, the company hopes to have its first taste tests in 2020.

These are only a few of the many 3D food printing startups springing into existence. The benefits from such innovations are boundless.

Not only will food 3D printing grant consumers control over the ingredients and mixtures they consume, but it is already beginning to enable new innovations in flavor itself, democratizing far healthier meal options in newly customizable cuisine categories.

Vertical Farming
Vertical farming, whereby food is grown in vertical stacks (in skyscrapers and buildings rather than outside in fields), marks a classic case of converging exponential technologies. Over just the past decade, the technology has surged from a handful of early-stage pilots to a full-grown industry.

Today, the average American meal travels 1,500-2,500 miles to get to your plate. As summed up by Worldwatch Institute researcher Brian Halweil, “We are spending far more energy to get food to the table than the energy we get from eating the food.” Additionally, the longer foods are out of the soil, the less nutritious they become, losing on average 45 percent of their nutrition before being consumed.

Yet beyond cutting down on time and transportation losses, vertical farming eliminates a whole host of issues in food production. Relying on hydroponics and aeroponics, vertical farms allows us to grow crops with 90 percent less water than traditional agriculture—which is critical for our increasingly thirsty planet.

Currently, the largest player around is Bay Area-based Plenty Inc. With over $200 million in funding from Softbank, Plenty is taking a smart tech approach to indoor agriculture. Plants grow on 20-foot-high towers, monitored by tens of thousands of cameras and sensors, optimized by big data and machine learning.

This allows the company to pack 40 plants in the space previously occupied by 1. The process also produces yields 350 times greater than outdoor farmland, using less than 1 percent as much water.

And rather than bespoke veggies for the wealthy few, Plenty’s processes allow them to knock 20-35 percent off the costs of traditional grocery stores. To date, Plenty has their home base in South San Francisco, a 100,000 square-foot farm in Kent, Washington, an indoor farm in the United Arab Emirates, and recently started construction on over 300 farms in China.

Another major player is New Jersey-based Aerofarms, which can now grow two million pounds of leafy greens without sunlight or soil.

To do this, Aerofarms leverages AI-controlled LEDs to provide optimized wavelengths of light for each plant. Using aeroponics, the company delivers nutrients by misting them directly onto the plants’ roots—no soil required. Rather, plants are suspended in a growth mesh fabric made from recycled water bottles. And here too, sensors, cameras, and machine learning govern the entire process.

While 50-80 percent of the cost of vertical farming is human labor, autonomous robotics promises to solve that problem. Enter contenders like Iron Ox, a firm that has developed the Angus robot, capable of moving around plant-growing containers.

The writing is on the wall, and traditional agriculture is fast being turned on its head.

Materials Science
In an era where materials science, nanotechnology, and biotechnology are rapidly becoming the same field of study, key advances are enabling us to create healthier, more nutritious, more efficient, and longer-lasting food.

For starters, we are now able to boost the photosynthetic abilities of plants. Using novel techniques to improve a micro-step in the photosynthesis process chain, researchers at UCLA were able to boost tobacco crop yield by 14-20 percent. Meanwhile, the RIPE Project, backed by Bill Gates and run out of the University of Illinois, has matched and improved those numbers.

And to top things off, The University of Essex was even able to improve tobacco yield by 27-47 percent by increasing the levels of protein involved in photo-respiration.

In yet another win for food-related materials science, Santa Barbara-based Apeel Sciences is further tackling the vexing challenge of food waste. Now approaching commercialization, Apeel uses lipids and glycerolipids found in the peels, seeds, and pulps of all fruits and vegetables to create “cutin”—the fatty substance that composes the skin of fruits and prevents them from rapidly spoiling by trapping moisture.

By then spraying fruits with this generated substance, Apeel can preserve foods 60 percent longer using an odorless, tasteless, colorless organic substance.

And stores across the US are already using this method. By leveraging our advancing knowledge of plants and chemistry, materials science is allowing us to produce more food with far longer-lasting freshness and more nutritious value than ever before.

Convergence
With advances in 3D printing, vertical farming, and materials sciences, we can now make food smarter, more productive, and far more resilient.

By the end of the next decade, you should be able to 3D print a fusion cuisine dish from the comfort of your home, using ingredients harvested from vertical farms, with nutritional value optimized by AI and materials science. However, even this picture doesn’t account for all the rapid changes underway in the food industry.

Join me next week for Part 2 of the Future of Food for a discussion on how food production will be transformed, quite literally, from the bottom up.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Vanessa Bates Ramirez Continue reading

Posted in Human Robots

#436021 AI Faces Speed Bumps and Potholes on Its ...

Implementing machine learning in the real world isn’t easy. The tools are available and the road is well-marked—but the speed bumps are many.

That was the conclusion of panelists wrapping up a day of discussions at the IEEE AI Symposium 2019, held at Cisco’s San Jose, Calif., campus last week.

The toughest problem, says Ben Irving, senior manager of Cisco’s strategy innovations group, is people.

It’s tough to find data scientist expertise, he indicated, so companies are looking into non-traditional sources of personnel, like political science. “There are some untapped areas with a lot of untapped data science expertise,” Irving says.

Lazard’s artificial intelligence manager Trevor Mottl agreed that would-be data scientists don’t need formal training or experience to break into the field. “This field is changing really rapidly,” he says. “There are new language models coming out every month, and new tools, so [anyone should] expect to not know everything. Experiment, try out new tools and techniques, read, study, spend time; there aren’t any true experts at this point because the foundational elements are shifting so rapidly.”

“It is a wonderful time to get into a field,” he reasons, noting that it doesn’t take long to catch up because there aren’t 20 years of history.”

Confusion about what different kinds of machine learning specialists do doesn’t help the personnel situation. An audience member asked panelists to explain the difference between data scientist, data analyst, and data engineer. Darrin Johnson, Nvidia global director of technical marketing for enterprise, admitted it’s hard to sort out, and any two companies could define the positions differently. “Sometimes,” he says, particularly at smaller companies, “a data scientist plays all three roles. But as companies grow, there are different groups that ingest data, clean data, and use data. At some companies, training and inference are separate. It really depends, which is a challenge when you are trying to hire someone.”

Mitigating the risks of a hot job market

The competition to hire data scientists, analysts, engineers, or whatever companies call them requires that managers make sure any work being done is structured and comprehensible at all times, the panelists cautioned.

“We need to remember that our data scientists go home every day and sometimes they don’t come back because they go home and then go to a different company,” says Lazard’s Mottl. “That’s a fact of life. If you give people choice on [how they do development], and have a successful person who gets poached by competitor, you have to either hire a team to unwrap what that person built or jettison their work and rebuild it.”

By contrast, he says, “places that have structured coding and structured commits and organized constructions of software have done very well.”

But keeping all of a company’s engineers working with the same languages and on the same development paths is not easy to do in a field that moves as fast as machine learning. Zongjie Diao, Cisco director of product management for machine learning, quipped: “I have a data scientist friend who says the speed at which he changes girlfriends is less than speed at which he changes languages.”

The data scientist/IT manager clash

Once a company finds the data engineers and scientists they need and get them started on the task of applying machine learning to that company’s operations, one of the first obstacles they face just might be the company’s IT department, the panelists suggested.

“IT is process oriented,” Mottl says. The IT team “knows how to keep data secure, to set up servers. But when you bring in a data science team, they want sandboxes, they want freedom, they want to explore and play.”

Also, Nvidia’s Johnson pointed out, “There is a language barrier.” The AI world, he says, is very different from networking or storage, and data scientists find it hard to articulate their requirements to IT.

On the ground or in the cloud?

And then there is the decision of where exactly machine learning should happen—on site, or in the cloud? At Lazard, Mottl says, the deep learning engineers do their experimentation on premises; that’s their sandbox. “But when we deploy, we deploy in the cloud,” he says.

Nvidia, Johnson says, thinks the opposite approach is better. We see the cloud as “the sandbox,” he says. “So you can run as many experiments as possible, fail fast, and learn faster.”

For Cisco’s Irving, the “where” of machine learning depends on the confidentiality of the data.

Mottl, who says rolling machine learning technology into operation can hit resistance from all across the company, had one last word of caution for those aiming to implement AI:

Data scientists are building things that might change the ways other people in the organization work, like sales and even knowledge workers. [You need to] think about the internal stakeholders and prepare them, because the last thing you want to do is to create a valuable new thing that nobody likes and people take potshots against.

The AI Symposium was organized by the Silicon Valley chapters of the IEEE Young Professionals, the IEEE Consultants’ Network, and IEEE Women in Engineering and supported by Cisco. Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435822 The Internet Is Coming to the Rest of ...

People surf it. Spiders crawl it. Gophers navigate it.

Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.

Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.

And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.

Oh, and musician Peter Gabriel is involved.

“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”

The workshop was a long time in the making.

Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.

Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”

“It blew me away,” he says.

Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”

Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.

“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”

So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.

At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.

Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.

Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.

Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.

Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.

The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.

“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel

The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.

“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.

Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”

Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.

Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.

“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.

A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?

One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.

According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.

Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.

“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller

Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.

Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.

Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.

Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.

And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”

“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”

That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.

At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)

Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.

“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”

An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading

Posted in Human Robots

#435816 This Light-based Nervous System Helps ...

Last night, way past midnight, I stumbled onto my porch blindly grasping for my keys after a hellish day of international travel. Lights were low, I was half-asleep, yet my hand grabbed the keychain, found the lock, and opened the door.

If you’re rolling your eyes—yeah, it’s not exactly an epic feat for a human. Thanks to the intricate wiring between our brain and millions of sensors dotted on—and inside—our skin, we know exactly where our hand is in space and what it’s touching without needing visual confirmation. But this combined sense of the internal and the external is completely lost to robots, which generally rely on computer vision or surface mechanosensors to track their movements and their interaction with the outside world. It’s not always a winning strategy.

What if, instead, we could give robots an artificial nervous system?

This month, a team led by Dr. Rob Shepard at Cornell University did just that, with a seriously clever twist. Rather than mimicking the electric signals in our nervous system, his team turned to light. By embedding optical fibers inside a 3D printed stretchable material, the team engineered an “optical lace” that can detect changes in pressure less than a fraction of a pound, and pinpoint the location to a spot half the width of a tiny needle.

The invention isn’t just an artificial skin. Instead, the delicate fibers can be distributed both inside a robot and on its surface, giving it both a sense of tactile touch and—most importantly—an idea of its own body position in space. Optical lace isn’t a superficial coating of mechanical sensors; it’s an entire platform that may finally endow robots with nerve-like networks throughout the body.

Eventually, engineers hope to use this fleshy, washable material to coat the sharp, cold metal interior of current robots, transforming C-3PO more into the human-like hosts of Westworld. Robots with a “bodily” sense could act as better caretakers for the elderly, said Shepard, because they can assist fragile people without inadvertently bruising or otherwise harming them. The results were published in Science Robotics.

An Unconventional Marriage
The optical lace is especially creative because it marries two contrasting ideas: one biological-inspired, the other wholly alien.

The overarching idea for optical lace is based on the animal kingdom. Through sight, hearing, smell, taste, touch, and other senses, we’re able to interpret the outside world—something scientists call exteroception. Thanks to our nervous system, we perform these computations subconsciously, allowing us to constantly “perceive” what’s going on around us.

Our other perception is purely internal. Proprioception (sorry, it’s not called “inception” though it should be) is how we know where our body parts are in space without having to look at them, which lets us perform complex tasks when blind. Although less intuitive than exteroception, proprioception also relies on stretching and other deformations within the muscles and tendons and receptors under the skin, which generate electrical currents that shoot up into the brain for further interpretation.

In other words, in theory it’s possible to recreate both perceptions with a single information-carrying system.

Here’s where the alien factor comes in. Rather than using electrical properties, the team turned to light as their data carrier. They had good reason. “Compared with electricity, light carries information faster and with higher data densities,” the team explained. Light can also transmit in multiple directions simultaneously, and is less susceptible to electromagnetic interference. Although optical nervous systems don’t exist in the biological world, the team decided to improve on Mother Nature and give it a shot.

Optical Lace
The construction starts with engineering a “sheath” for the optical nerve fibers. The team first used an elastic polyurethane—a synthetic material used in foam cushioning, for example—to make a lattice structure filled with large pores, somewhat like a lattice pie crust. Thanks to rapid, high-resolution 3D printing, the scaffold can have different stiffness from top to bottom. To increase sensitivity to the outside world, the team made the top of the lattice soft and pliable, to better transfer force to mechanical sensors. In contrast, the “deeper” regions held their structure better, and kept their structure under pressure.

Now the fun part. The team next threaded stretchable “light guides” into the scaffold. These fibers transmit photons, and are illuminated with a blue LED light. One, the input light guide, ran horizontally across the soft top part of the scaffold. Others ran perpendicular to the input in a “U” shape, going from more surface regions to deeper ones. These are the output guides. The architecture loosely resembles the wiring in our skin and flesh.

Normally, the output guides are separated from the input by a small air gap. When pressed down, the input light fiber distorts slightly, and if the pressure is high enough, it contacts one of the output guides. This causes light from the input fiber to “leak” to the output one, so that it lights up—the stronger the pressure, the brighter the output.

“When the structure deforms, you have contact between the input line and the output lines, and the light jumps into these output loops in the structure, so you can tell where the contact is happening,” said study author Patricia Xu. “The intensity of this determines the intensity of the deformation itself.”

Double Perception
As a proof-of-concept for proprioception, the team made a cylindrical lace with one input and 12 output channels. They varied the stiffness of the scaffold along the cylinder, and by pressing down at different points, were able to calculate how much each part stretched and deformed—a prominent precursor to knowing where different regions of the structure are moving in space. It’s a very rudimentary sort of proprioception, but one that will become more sophisticated with increasing numbers of strategically-placed mechanosensors.

The test for exteroception was a whole lot stranger. Here, the team engineered another optical lace with 15 output channels and turned it into a squishy piano. When pressed down, an Arduino microcontroller translated light output signals into sound based on the position of each touch. The stronger the pressure, the louder the volume. While not a musical masterpiece, the demo proved their point: the optical lace faithfully reported the strength and location of each touch.

A More Efficient Robot
Although remarkably novel, the optical lace isn’t yet ready for prime time. One problem is scalability: because of light loss, the material is limited to a certain size. However, rather than coating an entire robot, it may help to add optical lace to body parts where perception is critical—for example, fingertips and hands.

The team sees plenty of potential to keep developing the artificial flesh. Depending on particular needs, both the light guides and scaffold can be modified for sensitivity, spatial resolution, and accuracy. Multiple optical fibers that measure for different aspects—pressure, pain, temperature—can potentially be embedded in the same region, giving robots a multitude of senses.

In this way, we hope to reduce the number of electronics and combine signals from multiple sensors without losing information, the authors said. By taking inspiration from biological networks, it may even be possible to use various inputs through an optical lace to control how the robot behaves, closing the loop from sensation to action.

Image Credit: Cornell Organic Robotics Lab. A flexible, porous lattice structure is threaded with stretchable optical fibers containing more than a dozen mechanosensors and attached to an LED light. When the lattice structure is pressed, the sensors pinpoint changes in the photon flow. Continue reading

Posted in Human Robots