Tag Archives: stem

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots

#436504 20 Technology Metatrends That Will ...

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “metatrends” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom up.

Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

Let’s dive in.

20 Metatrends for the 2020s
(1) Continued increase in global abundance: The number of individuals in extreme poverty continues to drop, as the middle-income population continues to rise. This metatrend is driven by the convergence of high-bandwidth and low-cost communication, ubiquitous AI on the cloud, and growing access to AI-aided education and AI-driven healthcare. Everyday goods and services (finance, insurance, education, and entertainment) are being digitized and becoming fully demonetized, available to the rising billion on mobile devices.

(2) Global gigabit connectivity will connect everyone and everything, everywhere, at ultra-low cost: The deployment of both licensed and unlicensed 5G, plus the launch of a multitude of global satellite networks (OneWeb, Starlink, etc.), allow for ubiquitous, low-cost communications for everyone, everywhere, not to mention the connection of trillions of devices. And today’s skyrocketing connectivity is bringing online an additional three billion individuals, driving tens of trillions of dollars into the global economy. This metatrend is driven by the convergence of low-cost space launches, hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(3) The average human healthspan will increase by 10+ years: A dozen game-changing biotech and pharmaceutical solutions (currently in Phase 1, 2, or 3 clinical trials) will reach consumers this decade, adding an additional decade to the human healthspan. Technologies include stem cell supply restoration, wnt pathway manipulation, senolytic medicines, a new generation of endo-vaccines, GDF-11, and supplementation of NMD/NAD+, among several others. And as machine learning continues to mature, AI is set to unleash countless new drug candidates, ready for clinical trials. This metatrend is driven by the convergence of genome sequencing, CRISPR technologies, AI, quantum computing, and cellular medicine.

(4) An age of capital abundance will see increasing access to capital everywhere: From 2016 – 2018 (and likely in 2019), humanity hit all-time highs in the global flow of seed capital, venture capital, and sovereign wealth fund investments. While this trend will witness some ups and downs in the wake of future recessions, it is expected to continue its overall upward trajectory. Capital abundance leads to the funding and testing of ‘crazy’ entrepreneurial ideas, which in turn accelerate innovation. Already, $300 billion in crowdfunding is anticipated by 2025, democratizing capital access for entrepreneurs worldwide. This metatrend is driven by the convergence of global connectivity, dematerialization, demonetization, and democratization.

(5) Augmented reality and the spatial web will achieve ubiquitous deployment: The combination of augmented reality (yielding Web 3.0, or the spatial web) and 5G networks (offering 100Mb/s – 10Gb/s connection speeds) will transform how we live our everyday lives, impacting every industry from retail and advertising to education and entertainment. Consumers will play, learn, and shop throughout the day in a newly intelligent, virtually overlaid world. This metatrend will be driven by the convergence of hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(6) Everything is smart, embedded with intelligence: The price of specialized machine learning chips is dropping rapidly with a rise in global demand. Combined with the explosion of low-cost microscopic sensors and the deployment of high-bandwidth networks, we’re heading into a decade wherein every device becomes intelligent. Your child’s toy remembers her face and name. Your kids’ drone safely and diligently follows and videos all the children at the birthday party. Appliances respond to voice commands and anticipate your needs.

(7) AI will achieve human-level intelligence: As predicted by technologist and futurist Ray Kurzweil, artificial intelligence will reach human-level performance this decade (by 2030). Through the 2020s, AI algorithms and machine learning tools will be increasingly made open source, available on the cloud, allowing any individual with an internet connection to supplement their cognitive ability, augment their problem-solving capacity, and build new ventures at a fraction of the current cost. This metatrend will be driven by the convergence of global high-bandwidth connectivity, neural networks, and cloud computing. Every industry, spanning industrial design, healthcare, education, and entertainment, will be impacted.

(8) AI-human collaboration will skyrocket across all professions: The rise of “AI as a Service” (AIaaS) platforms will enable humans to partner with AI in every aspect of their work, at every level, in every industry. AIs will become entrenched in everyday business operations, serving as cognitive collaborators to employees—supporting creative tasks, generating new ideas, and tackling previously unattainable innovations. In some fields, partnership with AI will even become a requirement. For example: in the future, making certain diagnoses without the consultation of AI may be deemed malpractice.

(9) Most individuals adapt a JARVIS-like “software shell” to improve their quality of life: As services like Alexa, Google Home, and Apple Homepod expand in functionality, such services will eventually travel beyond the home and become your cognitive prosthetic 24/7. Imagine a secure JARVIS-like software shell that you give permission to listen to all your conversations, read your email, monitor your blood chemistry, etc. With access to such data, these AI-enabled software shells will learn your preferences, anticipate your needs and behavior, shop for you, monitor your health, and help you problem-solve in support of your mid- and long-term goals.

(10) Globally abundant, cheap renewable energy: Continued advancements in solar, wind, geothermal, hydroelectric, nuclear, and localized grids will drive humanity towards cheap, abundant, and ubiquitous renewable energy. The price per kilowatt-hour will drop below one cent per kilowatt-hour for renewables, just as storage drops below a mere three cents per kilowatt-hour, resulting in the majority displacement of fossil fuels globally. And as the world’s poorest countries are also the world’s sunniest, the democratization of both new and traditional storage technologies will grant energy abundance to those already bathed in sunlight.

(11) The insurance industry transforms from “recovery after risk” to “prevention of risk”: Today, fire insurance pays you after your house burns down; life insurance pays your next-of-kin after you die; and health insurance (which is really sick insurance) pays only after you get sick. This next decade, a new generation of insurance providers will leverage the convergence of machine learning, ubiquitous sensors, low-cost genome sequencing, and robotics to detect risk, prevent disaster, and guarantee safety before any costs are incurred.

(12) Autonomous vehicles and flying cars will redefine human travel (soon to be far faster and cheaper): Fully autonomous vehicles, car-as-a-service fleets, and aerial ride-sharing (flying cars) will be fully operational in most major metropolitan cities in the coming decade. The cost of transportation will plummet 3-4X, transforming real estate, finance, insurance, the materials economy, and urban planning. Where you live and work, and how you spend your time, will all be fundamentally reshaped by this future of human travel. Your kids and elderly parents will never drive. This metatrend will be driven by the convergence of machine learning, sensors, materials science, battery storage improvements, and ubiquitous gigabit connections.

(13) On-demand production and on-demand delivery will birth an “instant economy of things”: Urban dwellers will learn to expect “instant fulfillment” of their retail orders as drone and robotic last-mile delivery services carry products from local supply depots directly to your doorstep. Further riding the deployment of regional on-demand digital manufacturing (3D printing farms), individualized products can be obtained within hours, anywhere, anytime. This metatrend is driven by the convergence of networks, 3D printing, robotics, and artificial intelligence.

(14) Ability to sense and know anything, anytime, anywhere: We’re rapidly approaching the era wherein 100 billion sensors (the Internet of Everything) is monitoring and sensing (imaging, listening, measuring) every facet of our environments, all the time. Global imaging satellites, drones, autonomous car LIDARs, and forward-looking augmented reality (AR) headset cameras are all part of a global sensor matrix, together allowing us to know anything, anytime, anywhere. This metatrend is driven by the convergence of terrestrial, atmospheric and space-based sensors, vast data networks, and machine learning. In this future, it’s not “what you know,” but rather “the quality of the questions you ask” that will be most important.

(15) Disruption of advertising: As AI becomes increasingly embedded in everyday life, your custom AI will soon understand what you want better than you do. In turn, we will begin to both trust and rely upon our AIs to make most of our buying decisions, turning over shopping to AI-enabled personal assistants. Your AI might make purchases based upon your past desires, current shortages, conversations you’ve allowed your AI to listen to, or by tracking where your pupils focus on a virtual interface (i.e. what catches your attention). As a result, the advertising industry—which normally competes for your attention (whether at the Superbowl or through search engines)—will have a hard time influencing your AI. This metatrend is driven by the convergence of machine learning, sensors, augmented reality, and 5G/networks.

(16) Cellular agriculture moves from the lab into inner cities, providing high-quality protein that is cheaper and healthier: This next decade will witness the birth of the most ethical, nutritious, and environmentally sustainable protein production system devised by humankind. Stem cell-based ‘cellular agriculture’ will allow the production of beef, chicken, and fish anywhere, on-demand, with far higher nutritional content, and a vastly lower environmental footprint than traditional livestock options. This metatrend is enabled by the convergence of biotechnology, materials science, machine learning, and AgTech.

(17) High-bandwidth brain-computer interfaces (BCIs) will come online for public use: Technologist and futurist Ray Kurzweil has predicted that in the mid-2030s, we will begin connecting the human neocortex to the cloud. This next decade will see tremendous progress in that direction, first serving those with spinal cord injuries, whereby patients will regain both sensory capacity and motor control. Yet beyond assisting those with motor function loss, several BCI pioneers are now attempting to supplement their baseline cognitive abilities, a pursuit with the potential to increase their sensorium, memory, and even intelligence. This metatrend is fueled by the convergence of materials science, machine learning, and robotics.

(18) High-resolution VR will transform both retail and real estate shopping: High-resolution, lightweight virtual reality headsets will allow individuals at home to shop for everything from clothing to real estate from the convenience of their living room. Need a new outfit? Your AI knows your detailed body measurements and can whip up a fashion show featuring your avatar wearing the latest 20 designs on a runway. Want to see how your furniture might look inside a house you’re viewing online? No problem! Your AI can populate the property with your virtualized inventory and give you a guided tour. This metatrend is enabled by the convergence of: VR, machine learning, and high-bandwidth networks.

(19) Increased focus on sustainability and the environment: An increase in global environmental awareness and concern over global warming will drive companies to invest in sustainability, both from a necessity standpoint and for marketing purposes. Breakthroughs in materials science, enabled by AI, will allow companies to drive tremendous reductions in waste and environmental contamination. One company’s waste will become another company’s profit center. This metatrend is enabled by the convergence of materials science, artificial intelligence, and broadband networks.

(20) CRISPR and gene therapies will minimize disease: A vast range of infectious diseases, ranging from AIDS to Ebola, are now curable. In addition, gene-editing technologies continue to advance in precision and ease of use, allowing families to treat and ultimately cure hundreds of inheritable genetic diseases. This metatrend is driven by the convergence of various biotechnologies (CRISPR, gene therapy), genome sequencing, and artificial intelligence.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots

#436482 50+ Reasons Our Favorite Emerging ...

For most of history, technology was about atoms, the manipulation of physical stuff to extend humankind’s reach. But in the last five or six decades, atoms have partnered with bits, the elemental “particles” of the digital world as we know it today. As computing has advanced at the accelerating pace described by Moore’s Law, technological progress has become increasingly digitized.

SpaceX lands and reuses rockets and self-driving cars do away with drivers thanks to automation, sensors, and software. Businesses find and hire talent from anywhere in the world, and for better and worse, a notable fraction of the world learns and socializes online. From the sequencing of DNA to artificial intelligence and from 3D printing to robotics, more and more new technologies are moving at a digital pace and quickly emerging to reshape the world around us.

In 2019, stories charting the advances of some of these digital technologies consistently made headlines. Below is, what is at best, an incomplete list of some of the big stories that caught our eye this year. With so much happening, it’s likely we’ve missed some notable headlines and advances—as well as some of your personal favorites. In either instance, share your thoughts and candidates for the biggest stories and breakthroughs on Facebook and Twitter.

With that said, let’s dive straight into the year.

Artificial Intelligence
No technology garnered as much attention as AI in 2019. With good reason. Intelligent computer systems are transitioning from research labs to everyday life. Healthcare, weather forecasting, business process automation, traffic congestion—you name it, and machine learning algorithms are likely beginning to work on it. Yet, AI has also been hyped up and overmarketed, and the latest round of AI technology, deep learning, is likely only one piece of the AI puzzle.

This year, Open AI’s game-playing algorithms beat some of the world’s best Dota 2 players, DeepMind notched impressive wins in Starcraft, and Carnegie Mellon University’s Libratus “crushed” pros at six-player Texas Hold‘em.
Speaking of games, AI’s mastery of the incredibly complex game of Go prompted a former world champion to quit, stating that AI ‘”cannot be defeated.”
But it isn’t just fun and games. Practical, powerful applications that make the best of AI’s pattern recognition abilities are on the way. Insilico Medicine, for example, used machine learning to help discover and design a new drug in just 46 days, and DeepMind is focused on using AI to crack protein folding.
Of course, AI can be a double-edged sword. When it comes to deepfakes and fake news, for example, AI makes both easier to create and detect, and early in the year, OpenAI created and announced a powerful AI text generator but delayed releasing it for fear of malicious use.
Recognizing AI’s power for good and ill, the OECD, EU, World Economic Forum, and China all took a stab at defining an ethical framework for the development and deployment of AI.

Computing Systems
Processors and chips kickstarted the digital boom and are still the bedrock of continued growth. While progress in traditional silicon-based chips continues, it’s slowing and getting more expensive. Some say we’re reaching the end of Moore’s Law. While that may be the case for traditional chips, specialized chips and entirely new kinds of computing are waiting in the wings.

In fall 2019, Google confirmed its quantum computer had achieved “quantum supremacy,” a term that means a quantum computer can perform a calculation a normal computer cannot. IBM pushed back on the claim, and it should be noted the calculation was highly specialized. But while it’s still early days, there does appear to be some real progress (and more to come).
Should quantum computing become truly practical, “the implications are staggering.” It could impact machine learning, medicine, chemistry, and materials science, just to name a few areas.
Specialized chips continue to take aim at machine learning—a giant new chip with over a trillion transistors, for example, may make machine learning algorithms significantly more efficient.
Cellular computers also saw advances in 2019 thanks to CRISPR. And the year witnessed the emergence of the first reprogrammable DNA computer and new chips inspired by the brain.
The development of hardware computing platforms is intrinsically linked to software. 2019 saw a continued move from big technology companies towards open sourcing (at least parts of) their software, potentially democratizing the use of advanced systems.

Networks
Increasing interconnectedness has, in many ways, defined the 21st century so far. Your phone is no longer just a phone. It’s access to the world’s population and accumulated knowledge—and it fits in your pocket. Pretty neat. This is all thanks to networks, which had some notable advances in 2019.

The biggest network development of the year may well be the arrival of the first 5G networks.
5G’s faster speeds promise advances across many emerging technologies.
Self-driving vehicles, for example, may become both smarter and safer thanks to 5G C-V2X networks. (Don’t worry with trying to remember that. If they catch on, they’ll hopefully get a better name.)
Wi-Fi may have heard the news and said “hold my beer,” as 2019 saw the introduction of Wi-Fi 6. Perhaps the most important upgrade, among others, is that Wi-Fi 6 ensures that the ever-growing number of network connected devices get higher data rates.
Networks also went to space in 2019, as SpaceX began launching its Starlink constellation of broadband satellites. In typical fashion, Elon Musk showed off the network’s ability to bounce data around the world by sending a Tweet.

Augmented Reality and Virtual Reality
Forget Pokemon Go (unless you want to add me as a friend in the game—in which case don’t forget Pokemon Go). 2019 saw AR and VR advance, even as Magic Leap, the most hyped of the lot, struggled to live up to outsized expectations and sell headsets.

Mixed reality AR and VR technologies, along with the explosive growth of sensor-based data about the world around us, is creating a one-to-one “Mirror World” of our physical reality—a digital world you can overlay on our own or dive into immersively thanks to AR and VR.
Facebook launched Replica, for example, which is a photorealistic virtual twin of the real world that, among other things, will help train AIs to better navigate their physical surroundings.
Our other senses (beyond eyes) may also become part of the Mirror World through the use of peripherals like a newly developed synthetic skin that aim to bring a sense of touch to VR.
AR and VR equipment is also becoming cheaper—with more producers entering the space—and more user-friendly. Instead of a wired headset requiring an expensive gaming PC, the new Oculus Quest is a wireless, self-contained step toward the mainstream.
Niche uses also continue to gain traction, from Google Glass’s Enterprise edition to the growth of AR and VR in professional education—including on-the-job-training and roleplaying emotionally difficult work encounters, like firing an employee.

Digital Biology and Biotech
The digitization of biology is happening at an incredible rate. With wild new research coming to light every year and just about every tech giant pouring money into new solutions and startups, we’re likely to see amazing advances in 2020 added to those we saw in 2019.

None were, perhaps, more visible than the success of protein-rich, plant-based substitutes for various meats. This was the year Beyond Meat was the top IPO on the NASDAQ stock exchange and people stood in line for the plant-based Impossible Whopper and KFC’s Beyond Chicken.
In the healthcare space, a report about three people with HIV who became virus free thanks to a bone marrow transplants of stem cells caused a huge stir. The research is still in relatively early stages, and isn’t suitable for most people, but it does provides a glimmer of hope.
CRISPR technology, which almost deserves its own section, progressed by leaps and bounds. One tweak made CRISPR up to 50 times more accurate, while the latest new CRISPR-based system, CRISPR prime, was described as a “word processor” for gene editing.
Many areas of healthcare stand to gain from CRISPR. For instance, cancer treatment, were a first safety test showed ‘promising’ results.
CRISPR’s many potential uses, however, also include some weird/morally questionable areas, which was exemplified by one the year’s stranger CRISPR-related stories about a human-monkey hybrid embryo in China.
Incidentally, China could be poised to take the lead on CRISPR thanks to massive investments and research programs.
As a consequence of quick advances in gene editing, we are approaching a point where we will be able to design our own biology—but first we need to have a serious conversation as a society about the ethics of gene editing and what lines should be drawn.

3D Printing
3D printing has quietly been growing both market size and the objects the printers are capable of producing. While both are impressive, perhaps the biggest story of 2019 is their increased speed.

One example was a boat that was printed in just three days, which also set three new world records for 3D printing.
3D printing is also spreading in the construction industry. In Mexico, the technology is being used to construct 50 new homes with subsidized mortgages of just $20/month.
3D printers also took care of all parts of a 640 square-meter home in Dubai.
Generally speaking, the use of 3D printing to make parts for everything from rocket engines (even entire rockets) to trains to cars illustrates the sturdiness of the technology, anno 2019.
In healthcare, 3D printing is also advancing the cause of bio-printed organs and, in one example, was used to print vascularized parts of a human heart.

Robotics
Living in Japan, I get to see Pepper, Aibo, and other robots on pretty much a daily basis. The novelty of that experience is spreading to other countries, and robots are becoming a more visible addition to both our professional and private lives.

We can’t talk about robots and 2019 without mentioning Boston Dynamics’ Spot robot, which went on sale for the general public.
Meanwhile, Google, Boston Dynamics’ former owner, rebooted their robotics division with a more down-to-earth focus on everyday uses they hope to commercialize.
SoftBank’s Pepper robot is working as a concierge and receptionist in various countries. It is also being used as a home companion. Not satisfied, Pepper rounded off 2019 by heading to the gym—to coach runners.
Indeed, there’s a growing list of sports where robots perform as well—or better—than humans.
2019 also saw robots launch an assault on the kitchen, including the likes of Samsung’s robot chef, and invade the front yard, with iRobot’s Terra robotic lawnmower.
In the borderlands of robotics, full-body robotic exoskeletons got a bit more practical, as the (by all accounts) user-friendly, battery-powered Sarcos Robotics Guardian XO went commercial.

Autonomous Vehicles
Self-driving cars did not—if you will forgive the play on words—stay quite on track during 2019. The fallout from Uber’s 2018 fatal crash marred part of the year, while some big players ratcheted back expectations on a quick shift to the driverless future. Still, self-driving cars, trucks, and other autonomous systems did make progress this year.

Winner of my unofficial award for best name in self-driving goes to Optimus Ride. The company also illustrates that self-driving may not be about creating a one-size-fits-all solution but catering to specific markets.
Self-driving trucks had a good year, with tests across many countries and states. One of the year’s odder stories was a self-driving truck traversing the US with a delivery of butter.
A step above the competition may be the future slogan (or perhaps not) of Boeing’s self-piloted air taxi that saw its maiden test flight in 2019. It joins a growing list of companies looking to create autonomous, flying passenger vehicles.
2019 was also the year where companies seemed to go all in on last-mile autonomous vehicles. Who wins that particular competition could well emerge during 2020.

Blockchain and Digital Currencies
Bitcoin continues to be the cryptocurrency equivalent of a rollercoaster, but the underlying blockchain technology is progressing more steadily. Together, they may turn parts of our financial systems cashless and digital—though how and when remains a slightly open question.

One indication of this was Facebook’s hugely controversial announcement of Libra, its proposed cryptocurrency. The company faced immediate pushback and saw a host of partners jump ship. Still, it brought the tech into mainstream conversations as never before and is putting the pressure on governments and central banks to explore their own digital currencies.
Deloitte’s in-depth survey of the state of blockchain highlighted how the technology has moved from fintech into just about any industry you can think of.
One of the biggest issues facing the spread of many digital currencies—Bitcoin in particular, you could argue—is how much energy it consumes to mine them. 2019 saw the emergence of several new digital currencies with a much smaller energy footprint.
2019 was also a year where we saw a new kind of digital currency, stablecoins, rise to prominence. As the name indicates, stablecoins are a group of digital currencies whose price fluctuations are more stable than the likes of Bitcoin.
In a geopolitical sense, 2019 was a year of China playing catch-up. Having initially banned blockchain, the country turned 180 degrees and announced that it was “quite close” to releasing a digital currency and a wave of blockchain-programs.

Renewable Energy and Energy Storage
While not every government on the planet seems to be a fan of renewable energy, it keeps on outperforming fossil fuel after fossil fuel in places well suited to it—even without support from some of said governments.

One of the reasons for renewable energy’s continued growth is that energy efficiency levels keep on improving.
As a result, an increased number of coal plants are being forced to close due to an inability to compete, and the UK went coal-free for a record two weeks.
We are also seeing more and more financial institutions refusing to fund fossil fuel projects. One such example is the European Investment Bank.
Renewable energy’s advance is tied at the hip to the rise of energy storage, which also had a breakout 2019, in part thanks to investments from the likes of Bill Gates.
The size and capabilities of energy storage also grew in 2019. The best illustration came from Australia were Tesla’s mega-battery proved that energy storage has reached a stage where it can prop up entire energy grids.

Image Credit: Mathew Schwartz / Unsplash Continue reading

Posted in Human Robots

#436234 Robot Gift Guide 2019

Welcome to the eighth edition of IEEE Spectrum’s Robot Gift Guide!

This year we’re featuring 15 robotic products that we think will make fantastic holiday gifts. As always, we tried to include a broad range of robot types and prices, focusing mostly on items released this year. (A reminder: While we provide links to places where you can buy these items, we’re not endorsing any in particular, and a little bit of research may result in better deals.)

If you need even more robot gift ideas, take a look at our past guides: 2018, 2017, 2016, 2015, 2014, 2013, and 2012. Some of those robots are still great choices and might be way cheaper now than when we first posted about them. And if you have suggestions that you’d like to share, post a comment below to help the rest of us find the perfect robot gift.

Skydio 2

Image: Skydio

What makes robots so compelling is their autonomy, and the Skydio 2 is one of the most autonomous robots we’ve ever seen. It uses an array of cameras to map its environment and avoid obstacles in real-time, making flight safe and effortless and enabling the kinds of shots that would be impossible otherwise. Seriously, this thing is magical, and it’s amazing that you can actually buy one.
$1,000
Skydio
UBTECH Jimu MeeBot 2

Image: UBTECH

The Jimu MeeBot 2.0 from UBTECH is a STEM education robot designed to be easy to build and program. It includes six servo motors, a color sensor, and LED lights. An app for iPhone or iPad provides step-by-step 3D instructions, and helps you code different behaviors for the robot. It’s available exclusively from Apple.
$130
Apple
iRobot Roomba s9+

Image: iRobot

We know that $1,400 is a crazy amount of money to spend on a robot vacuum, but the Roomba s9+ is a crazy robot vacuum. As if all of its sensors and mapping intelligence wasn’t enough, it empties itself, which means that you can have your floors vacuumed every single day for a month and you don’t have to even think about it. This is what home robots are supposed to be.
$1,400
iRobot
PFF Gita

Photo: Piaggio Fast Forward

Nobody likes carrying things, which is why Gita is perfect for everyone with an extra $3,000 lying around. Developed by Piaggio Fast Forward, this autonomous robot will follow you around with a cargo hold full of your most important stuff, and do it in a way guaranteed to attract as much attention as possible.
$3,250
Gita
DJI Mavic Mini

Photo: DJI

It’s tiny, it’s cheap, and it takes good pictures—what more could you ask for from a drone? And for $400, this is an excellent drone to get if you’re on a budget and comfortable with manual flight. Keep in mind that while the Mavic Mini is small enough that you don’t need to register it with the FAA, you do still need to follow all the same rules and regulations.
$400
DJI
LEGO Star Wars Droid Commander

Image: LEGO

Designed for kids ages 8+, this LEGO set includes more than 1,000 pieces, enough to build three different droids: R2-D2, Gonk Droid, and Mouse Droid. Using a Bluetooth-controlled robotic brick called Move Hub, which connects to the LEGO BOOST Star Wars app, kids can change how the robots behave and solve challenges, learning basic robotics and coding skills.
$200
LEGO
Sony Aibo

Photo: Sony

Robot pets don’t get much more sophisticated (or expensive) than Sony’s Aibo. Strictly speaking, it’s one of the most complex consumer robots you can buy, and Sony continues to add to Aibo’s software. Recent new features include user programmability, and the ability to “feed” it.
$2,900 (free aibone and paw pads until 12/29/2019)
Sony
Neato Botvac D4 Connected

Photo: Neato

The Neato Botvac D4 may not have all of the features of its fancier and more expensive siblings, but it does have the features that you probably care the most about: The ability to make maps of its environment for intelligent cleaning (using lasers!), along with user-defined no-go lines that keep it where you want it. And it cleans quite well, too.
$530 $350 (sale)
Neato Robotics
Cubelets Curiosity Set

Photo: Modular Robotics

Cubelets are magnetic blocks that you can snap together to make an endless variety of robots with no programming and no wires. The newest set, called Curiosity, is designed for kids ages 4+ and comes with 10 robotic cubes. These include light and distance sensors, motors, and a Bluetooth module, which connects the robot constructions to the Cubelets app.
$250
Modular Robotics
Tertill

Photo: Franklin Robotics

Tertill does one simple job: It weeds your garden. It’s waterproof, dirt proof, solar powered, and fully autonomous, meaning that you can leave it out in your garden all summer and just enjoy eating your plants rather than taking care of them.
$350
Tertill
iRobot Root

Photo: iRobot

Root was originally developed by Harvard University as a tool to help kids progressively learn to code. iRobot has taken over Root and is now supporting the curriculum, which starts for kids before they even know how to read and should keep them busy for years afterwards.
$200
iRobot
LOVOT

Image: Lovot

Let’s be honest: Nobody is really quite sure what LOVOT is. We can all agree that it’s kinda cute, though. And kinda weird. But cute. Created by Japanese robotics startup Groove X, LOVOT does have a whole bunch of tech packed into its bizarre little body and it will do its best to get you to love it.
$2,750 (¥300,000)
LOVOT
Sphero RVR

Photo: Sphero

RVR is a rugged, versatile, easy to program mobile robot. It’s a development platform designed to be a bridge between educational robots like Sphero and more sophisticated and expensive systems like Misty. It’s mostly affordable, very expandable, and comes from a company with a lot of experience making robots.
$250
Sphero
“How to Train Your Robot”

Image: Lawrence Hall of Science

Aimed at 4th and 5th graders, “How to Train Your Robot,” written by Blooma Goldberg, Ken Goldberg, and Ashley Chase, and illustrated by Dave Clegg, is a perfect introduction to robotics for kids who want to get started with designing and building robots. But the book isn’t just for beginners: It’s also a fun, inspiring read for kids who are already into robotics and want to go further—it even introduces concepts like computer simulations and deep learning. You can download a free digital copy or request hardcopies here.
Free
UC Berkeley
MIT Mini Cheetah

Photo: MIT

Yes, Boston Dynamics’ Spot, now available for lease, is probably the world’s most famous quadruped, but MIT is starting to pump out Mini Cheetahs en masse for researchers, and while we’re not exactly sure how you’d manage to get one of these things short of stealing one directly for MIT, a Mini Cheetah is our fantasy robotics gift this year. Mini Cheetah looks like a ton of fun—it’s portable, highly dynamic, super rugged, and easy to control. We want one!
Price N/A
MIT Biomimetic Robotics Lab

For more tech gift ideas, see also IEEE Spectrum’s annual Gift Guide. Continue reading

Posted in Human Robots

#436202 Trump CTO Addresses AI, Facial ...

Michael Kratsios, the Chief Technology Officer of the United States, took the stage at Stanford University last week to field questions from Stanford’s Eileen Donahoe and attendees at the 2019 Fall Conference of the Institute for Human-Centered Artificial Intelligence (HAI).

Kratsios, the fourth to hold the U.S. CTO position since its creation by President Barack Obama in 2009, was confirmed in August as President Donald Trump’s first CTO. Before joining the Trump administration, he was chief of staff at investment firm Thiel Capital and chief financial officer of hedge fund Clarium Capital. Donahoe is Executive Director of Stanford’s Global Digital Policy Incubator and served as the first U.S. Ambassador to the United Nations Human Rights Council during the Obama Administration.

The conversation jumped around, hitting on both accomplishments and controversies. Kratsios touted the administration’s success in fixing policy around the use of drones, its memorandum on STEM education, and an increase in funding for basic research in AI—though the magnitude of that increase wasn’t specified. He pointed out that the Trump administration’s AI policy has been a continuation of the policies of the Obama administration, and will continue to build on that foundation. As proof of this, he pointed to Trump’s signing of the American AI Initiative earlier this year. That executive order, Kratsios said, was intended to bring various government agencies together to coordinate their AI efforts and to push the idea that AI is a tool for the American worker. The AI Initiative, he noted, also took into consideration that AI will cause job displacement, and asked private companies to pledge to retrain workers.

The administration, he said, is also looking to remove barriers to AI innovation. In service of that goal, the government will, in the next month or so, release a regulatory guidance memo instructing government agencies about “how they should think about AI technologies,” said Kratsios.

U.S. vs China in AI

A few of the exchanges between Kratsios and Donahoe hit on current hot topics, starting with the tension between the U.S. and China.

Donahoe:

“You talk a lot about unique U.S. ecosystem. In which aspect of AI is the U.S. dominant, and where is China challenging us in dominance?

Kratsios:

“They are challenging us on machine vision. They have more data to work with, given that they have surveillance data.”

Donahoe:

“To what extent would you say the quantity of data collected and available will be a determining factor in AI dominance?”

Kratsios:

“It makes a big difference in the short term. But we do research on how we get over these data humps. There is a future where you don’t need as much data, a lot of federal grants are going to [research in] how you can train models using less data.”

Donahoe turned the conversation to a different tension—that between innovation and values.

Donahoe:

“A lot of conversation yesterday was about the tension between innovation and values, and how do you hold those things together and lead in both realms.”

Kratsios:

“We recognized that the U.S. hadn’t signed on to principles around developing AI. In May, we signed [the Organization for Economic Cooperation and Development Principles on Artificial Intelligence], coming together with other Western democracies to say that these are values that we hold dear.

[Meanwhile,] we have adversaries around the world using AI to surveil people, to suppress human rights. That is why American leadership is so critical: We want to come out with the next great product. And we want our values to underpin the use cases.”

A member of the audience pushed further:

“Maintaining U.S. leadership in AI might have costs in terms of individuals and society. What costs should individuals and society bear to maintain leadership?”

Kratsios:

“I don’t view the world that way. Our companies big and small do not hesitate to talk about the values that underpin their technology. [That is] markedly different from the way our adversaries think. The alternatives are so dire [that we] need to push efforts to bake the values that we hold dear into this technology.”

Facial recognition

And then the conversation turned to the use of AI for facial recognition, an application which (at least for police and other government agencies) was recently banned in San Francisco.

Donahoe:

“Some private sector companies have called for government regulation of facial recognition, and there already are some instances of local governments regulating it. Do you expect federal regulation of facial recognition anytime soon? If not, what ought the parameters be?”

Kratsios:

“A patchwork of regulation of technology is not beneficial for the country. We want to avoid that. Facial recognition has important roles—for example, finding lost or displaced children. There are use cases, but they need to be underpinned by values.”

A member of the audience followed up on that topic, referring to some data presented earlier at the HAI conference on bias in AI:

“Frequently the example of finding missing children is given as the example of why we should not restrict use of facial recognition. But we saw Joy Buolamwini’s presentation on bias in data. I would like to hear your thoughts about how government thinks we should use facial recognition, knowing about this bias.”

Kratsios:

“Fairness, accountability, and robustness are things we want to bake into any technology—not just facial recognition—as we build rules governing use cases.”

Immigration and innovation

A member of the audience brought up the issue of immigration:

“One major pillar of innovation is immigration, does your office advocate for it?”

Kratsios:

“Our office pushes for best and brightest people from around the world to come to work here and study here. There are a few efforts we have made to move towards a more merit-based immigration system, without congressional action. [For example, in] the H1-B visa system, you go through two lotteries. We switched the order of them in order to get more people with advanced degrees through.”

The government’s tech infrastructure

Donahoe brought the conversation around to the tech infrastructure of the government itself:

“We talk about the shiny object, AI, but the 80 percent is the unsexy stuff, at federal and state levels. We don’t have a modern digital infrastructure to enable all the services—like a research cloud. How do we create this digital infrastructure?”

Kratsios:

“I couldn’t agree more; the least partisan issue in Washington is about modernizing IT infrastructure. We spend like $85 billion a year on IT at the federal level, we can certainly do a better job of using those dollars.” Continue reading

Posted in Human Robots