Tag Archives: star

#437990 Video Friday: Record-Breaking Drone Show ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.

The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.

[ Bio-Inspired and Medical Robotics Lab ]

How TRI trains its robots.

[ TRI ]

The only thing more satisfying than one SCARA robot is two SCARA robots working together.

[ Fanuc ]

I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.

[ Shinoda & Makino Lab ]

Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.

[ Nature ]

A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).

[ Xinhua ]

Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.

[ University of Michigan ] via [ Fetch Robotics ]

This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.

And here's a video report on the SubT Urban Beta Course performance:

[ CERBERUS ]

Congrats to Energy Robotics on 2 million euros in seed funding!

[ Energy Robotics ]

Thanks Stefan!

In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.

HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.

[ HEBI Robotics ]

Thanks Hardik!

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.

[ Paper ]

Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.

[ Science of Soft Robots ]

A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.

[ Clearpath Robotics ]

Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.

[ Northeastern ]

Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.

[ Microsoft Research ]

A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.

[ COSTAR ] Continue reading

Posted in Human Robots

#437974 China Wants to Be the World’s AI ...

China’s star has been steadily rising for decades. Besides slashing extreme poverty rates from 88 percent to under 2 percent in just 30 years, the country has become a global powerhouse in manufacturing and technology. Its pace of growth may slow due to an aging population, but China is nonetheless one of the world’s biggest players in multiple cutting-edge tech fields.

One of these fields, and perhaps the most significant, is artificial intelligence. The Chinese government announced a plan in 2017 to become the world leader in AI by 2030, and has since poured billions of dollars into AI projects and research across academia, government, and private industry. The government’s venture capital fund is investing over $30 billion in AI; the northeastern city of Tianjin budgeted $16 billion for advancing AI; and a $2 billion AI research park is being built in Beijing.

On top of these huge investments, the government and private companies in China have access to an unprecedented quantity of data, on everything from citizens’ health to their smartphone use. WeChat, a multi-functional app where people can chat, date, send payments, hail rides, read news, and more, gives the CCP full access to user data upon request; as one BBC journalist put it, WeChat “was ahead of the game on the global stage and it has found its way into all corners of people’s existence. It could deliver to the Communist Party a life map of pretty much everybody in this country, citizens and foreigners alike.” And that’s just one (albeit big) source of data.

Many believe these factors are giving China a serious leg up in AI development, even providing enough of a boost that its progress will surpass that of the US.

But there’s more to AI than data, and there’s more to progress than investing billions of dollars. Analyzing China’s potential to become a world leader in AI—or in any technology that requires consistent innovation—from multiple angles provides a more nuanced picture of its strengths and limitations. In a June 2020 article in Foreign Affairs, Oxford fellows Carl Benedikt Frey and Michael Osborne argued that China’s big advantages may not actually be that advantageous in the long run—and its limitations may be very limiting.

Moving the AI Needle
To get an idea of who’s likely to take the lead in AI, it could help to first consider how the technology will advance beyond its current state.

To put it plainly, AI is somewhat stuck at the moment. Algorithms and neural networks continue to achieve new and impressive feats—like DeepMind’s AlphaFold accurately predicting protein structures or OpenAI’s GPT-3 writing convincing articles based on short prompts—but for the most part these systems’ capabilities are still defined as narrow intelligence: completing a specific task for which the system was painstakingly trained on loads of data.

(It’s worth noting here that some have speculated OpenAI’s GPT-3 may be an exception, the first example of machine intelligence that, while not “general,” has surpassed the definition of “narrow”; the algorithm was trained to write text, but ended up being able to translate between languages, write code, autocomplete images, do math, and perform other language-related tasks it wasn’t specifically trained for. However, all of GPT-3’s capabilities are limited to skills it learned in the language domain, whether spoken, written, or programming language).

Both AlphaFold’s and GPT-3’s success was due largely to the massive datasets they were trained on; no revolutionary new training methods or architectures were involved. If all it was going to take to advance AI was a continuation or scaling-up of this paradigm—more input data yields increased capability—China could well have an advantage.

But one of the biggest hurdles AI needs to clear to advance in leaps and bounds rather than baby steps is precisely this reliance on extensive, task-specific data. Other significant challenges include the technology’s fast approach to the limits of current computing power and its immense energy consumption.

Thus, while China’s trove of data may give it an advantage now, it may not be much of a long-term foothold on the climb to AI dominance. It’s useful for building products that incorporate or rely on today’s AI, but not for pushing the needle on how artificially intelligent systems learn. WeChat data on users’ spending habits, for example, would be valuable in building an AI that helps people save money or suggests items they might want to purchase. It will enable (and already has enabled) highly tailored products that will earn their creators and the companies that use them a lot of money.

But data quantity isn’t what’s going to advance AI. As Frey and Osborne put it, “Data efficiency is the holy grail of further progress in artificial intelligence.”

To that end, research teams in academia and private industry are working on ways to make AI less data-hungry. New training methods like one-shot learning and less-than-one-shot learning have begun to emerge, along with myriad efforts to make AI that learns more like the human brain.

While not insignificant, these advancements still fall into the “baby steps” category. No one knows how AI is going to progress beyond these small steps—and that uncertainty, in Frey and Osborne’s opinion, is a major speed bump on China’s fast-track to AI dominance.

How Innovation Happens
A lot of great inventions have happened by accident, and some of the world’s most successful companies started in garages, dorm rooms, or similarly low-budget, nondescript circumstances (including Google, Facebook, Amazon, and Apple, to name a few). Innovation, the authors point out, often happens “through serendipity and recombination, as inventors and entrepreneurs interact and exchange ideas.”

Frey and Osborne argue that although China has great reserves of talent and a history of building on technologies conceived elsewhere, it doesn’t yet have a glowing track record in terms of innovation. They note that of the 100 most-cited patents from 2003 to present, none came from China. Giants Tencent, Alibaba, and Baidu are all wildly successful in the Chinese market, but they’re rooted in technologies or business models that came out of the US and were tweaked for the Chinese population.

“The most innovative societies have always been those that allowed people to pursue controversial ideas,” Frey and Osborne write. China’s heavy censorship of the internet and surveillance of citizens don’t quite encourage the pursuit of controversial ideas. The country’s social credit system rewards people who follow the rules and punishes those who step out of line. Frey adds that top-down execution of problem-solving is effective when the problem at hand is clearly defined—and the next big leaps in AI are not.

It’s debatable how strongly a culture of social conformism can impact technological innovation, and of course there can be exceptions. But a relevant historical example is the Soviet Union, which, despite heavy investment in science and technology that briefly rivaled the US in fields like nuclear energy and space exploration, ended up lagging far behind primarily due to political and cultural factors.

Similarly, China’s focus on computer science in its education system could give it an edge—but, as Frey told me in an email, “The best students are not necessarily the best researchers. Being a good researcher also requires coming up with new ideas.”

Winner Take All?
Beyond the question of whether China will achieve AI dominance is the issue of how it will use the powerful technology. Several of the ways China has already implemented AI could be considered morally questionable, from facial recognition systems used aggressively against ethnic minorities to smart glasses for policemen that can pull up information about whoever the wearer looks at.

This isn’t to say the US would use AI for purely ethical purposes. The military’s Project Maven, for example, used artificially intelligent algorithms to identify insurgent targets in Iraq and Syria, and American law enforcement agencies are also using (mostly unregulated) facial recognition systems.

It’s conceivable that “dominance” in AI won’t go to one country; each nation could meet milestones in different ways, or meet different milestones. Researchers from both countries, at least in the academic sphere, could (and likely will) continue to collaborate and share their work, as they’ve done on many projects to date.

If one country does take the lead, it will certainly see some major advantages as a result. Brookings Institute fellow Indermit Gill goes so far as to say that whoever leads in AI in 2030 will “rule the world” until 2100. But Gill points out that in addition to considering each country’s strengths, we should consider how willing they are to improve upon their weaknesses.

While China leads in investment and the US in innovation, both nations are grappling with huge economic inequalities that could negatively impact technological uptake. “Attitudes toward the social change that accompanies new technologies matter as much as the technologies, pointing to the need for complementary policies that shape the economy and society,” Gill writes.

Will China’s leadership be willing to relax its grip to foster innovation? Will the US business environment be enough to compete with China’s data, investment, and education advantages? And can both countries find a way to distribute technology’s economic benefits more equitably?

Time will tell, but it seems we’ve got our work cut out for us—and China does too.

Image Credit: Adam Birkett on Unsplash Continue reading

Posted in Human Robots

#437864 Video Friday: Jet-Powered Flying ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

ICRA 2020, the world’s best, biggest, longest virtual robotics conference ever, kicked off last Sunday with an all-star panel on a critical topic: “COVID-19: How Can Roboticists Help?”

Watch other ICRA keynotes on IEEE.tv.

We’re getting closer! Well, kinda. iRonCub, the jet-powered flying humanoid, is still a simulation for now, but not only are the simulations getting better—the researchers have begun testing real jet engines!

This video shows the latest results on Aerial Humanoid Robotics obtained by the Dynamic Interaction Control Lab at the Italian Institute of Technology. The video simulates robot and jet dynamics, where the latter uses the results obtained in the paper “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters.

This video presents the paper entitled “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters (Volume: 5 , Issue: 2 , April 2020 ) Page(s): 2070 – 2077. Preprint at https://arxiv.org/pdf/1909.13296.pdf.​

[ IIT ]

In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) came up with new tools to let robots better perceive what they’re interacting with: the ability to see and classify items, and a softer, delicate touch.

[ MIT CSAIL ]

UBTECH’s anti-epidemic solutions greatly relieve the workload of front-line medical staff and cut the consumption of personal protective equipment (PPE).

[ UBTECH ]

We demonstrate a method to assess the concrete deterioration in sewers by performing a tactile inspection motion with a sensorized foot of a legged robot.

[ THING ] via [ ANYmal Research ]

Get a closer look at the Virtual competition of the Urban Circuit and how teams can use the simulated environments to better prepare for the physical courses of the Subterranean Challenge.

[ SubT ]

Roboticists at the University of California San Diego have developed flexible feet that can help robots walk up to 40 percent faster on uneven terrain, such as pebbles and wood chips. The work has applications for search-and-rescue missions as well as space exploration.

[ UCSD ]

Thanks Ioana!

Tsuki is a ROS-enabled, highly dynamic quadruped robot developed by Lingkang Zhang.

And as far as we know, Lingkang is still chasing it.

[ Quadruped Tsuki ]

Thanks Lingkang!

Watch this.

This video shows an impressive demo of how YuMi’s superior precision, using precise servo gripper fingers and vacuum suction tool to pick up extremely small parts inside a mechanical watch. The video is not a final application used in production, it is a demo of how such an application can be implemented.

[ ABB ]

Meet Presso, the “5-minute dry cleaning robot.” Can you really call this a robot? We’re not sure. The company says it uses “soft robotics to hold the garment correctly, then clean, sanitize, press and dry under 5 minutes.” The machine was initially designed for use in the hospitality industry, but after adding a disinfectant function for COVID-19, it is now being used on movie and TV sets.

[ Presso ]

The next Mars rover launches next month (!), and here’s a look at some of the instruments on board.

[ JPL ]

Embodied Lead Engineer, Peter Teel, describes why we chose to build Moxie’s computing system from scratch and what makes it so unique.

[ Embodied ]

I did not know that this is where Pepper’s e-stop is. Nice design!

[ Softbank Robotics ]

State of the art in the field of swarm robotics lacks systems capable of absolute decentralization and is hence unable to mimic complex biological swarm systems consisting of simple units. Our research interconnects fields of swarm robotics and computer vision, and introduces novel use of a vision-based method UVDAR for mutual localization in swarm systems, allowing for absolute decentralization found among biological swarm systems. The developed methodology allows us to deploy real-world aerial swarming systems with robots directly localizing each other instead of communicating their states via a communication network, which is a typical bottleneck of current state of the art systems.

[ CVUT ]

I’m almost positive I could not do this task.

It’s easy to pick up objects using YuMi’s integrated vacuum functionality, it also supports ABB Robot’s Conveyor Tracking and Pickmaster 3 functionality, enabling it to track a moving conveyor and pick up objects using vision. Perfect for consumer products handling applications.

[ ABB ]

Cycling safety gestures, such as hand signals and shoulder checks, are an essential part of safe manoeuvring on the road. Child cyclists, in particular, might have difficulties performing safety gestures on the road or even forget about them, given the lack of cycling experience, road distractions and differences in motor and perceptual-motor abilities compared with adults. To support them, we designed two methods to remind about safety gestures while cycling. The first method employs an icon-based reminder in heads-up display (HUD) glasses and the second combines vibration on the handlebar and ambient light in the helmet. We investigated the performance of both methods in a controlled test-track experiment with 18 children using a mid-size tricycle, augmented with a set of sensors to recognize children’s behavior in real time. We found that both systems are successful in reminding children about safety gestures and have their unique advantages and disadvantages.

[ Paper ]

Nathan Sam and Robert “Red” Jensen fabricate and fly a Prandtl-M aircraft at NASA’s Armstrong Flight Research Center in California. The aircraft is the second of three prototypes of varying sizes to provide scientists with options to fly sensors in the Martian atmosphere to collect weather and landing site information for future human exploration of Mars.

[ NASA ]

This is clever: In order to minimize time spent labeling datasets, you can use radar to identify other vehicles, not because the radar can actually recognize other vehicles, but because the radar can recognize other stuff that’s big and moving, which turns out to be almost as good.

[ ICRA Paper ]

Happy 10th birthday to the Natural Robotics Lab at the University of Sheffield.

[ NRL ] Continue reading

Posted in Human Robots

#437645 How Robots Became Essential Workers in ...

Photo: Sivaram V/Reuters

A robot, developed by Asimov Robotics to spread awareness about the coronavirus, holds a tray with face masks and sanitizer.

As the coronavirus emergency exploded into a full-blown pandemic in early 2020, forcing countless businesses to shutter, robot-making companies found themselves in an unusual situation: Many saw a surge in orders. Robots don’t need masks, can be easily disinfected, and, of course, they don’t get sick.

An army of automatons has since been deployed all over the world to help with the crisis: They are monitoring patients, sanitizing hospitals, making deliveries, and helping frontline medical workers reduce their exposure to the virus. Not all robots operate autonomously—many, in fact, require direct human supervision, and most are limited to simple, repetitive tasks. But robot makers say the experience they’ve gained during this trial-by-fire deployment will make their future machines smarter and more capable. These photos illustrate how robots are helping us fight this pandemic—and how they might be able to assist with the next one.

DROID TEAM

Photo: Clement Uwiringiyimana/Reuters

A squad of robots serves as the first line of defense against person-to-person transmission at a medical center in Kigali, Rwanda. Patients walking into the facility get their temperature checked by the machines, which are equipped with thermal cameras atop their heads. Developed by UBTech Robotics, in China, the robots also use their distinctive appearance—they resemble characters out of a Star Wars movie—to get people’s attention and remind them to wash their hands and wear masks.

Photo: Clement Uwiringiyimana/Reuters

SAY “AAH”
To speed up COVID-19 testing, a team of Danish doctors and engineers at the University of Southern Denmark and at Lifeline Robotics is developing a fully automated swab robot. It uses computer vision and machine learning to identify the perfect target spot inside the person’s throat; then a robotic arm with a long swab reaches in to collect the sample—all done with a swiftness and consistency that humans can’t match. In this photo, one of the creators, Esben Østergaard, puts his neck on the line to demonstrate that the robot is safe.

Photo: University of Southern Denmark

GERM ZAPPER
After six of its doctors became infected with the coronavirus, the Sassarese hospital in Sardinia, Italy, tightened its safety measures. It also brought in the robots. The machines, developed by UVD Robots, use lidar to navigate autonomously. Each bot carries an array of powerful short-wavelength ultraviolet-C lights that destroy the genetic material of viruses and other pathogens after a few minutes of exposure. Now there is a spike in demand for UV-disinfection robots as hospitals worldwide deploy them to sterilize intensive care units and operating theaters.

Photo: UVD Robots

RUNNING ERRANDS

In medical facilities, an ideal role for robots is taking over repetitive chores so that nurses and physicians can spend their time doing more important tasks. At Shenzhen Third People’s Hospital, in China, a robot called Aimbot drives down the hallways, enforcing face-mask and social-distancing rules and spraying disinfectant. At a hospital near Austin, Texas, a humanoid robot developed by Diligent Robotics fetches supplies and brings them to patients’ rooms. It repeats this task day and night, tirelessly, allowing the hospital staff to spend more time interacting with patients.

Photos, left: Diligent Robotics; Right: UBTech Robotics

THE DOCTOR IS IN
Nurses and doctors at Circolo Hospital in Varese, in northern Italy—the country’s hardest-hit region—use robots as their avatars, enabling them to check on their patients around the clock while minimizing exposure and conserving protective equipment. The robots, developed by Chinese firm Sanbot, are equipped with cameras and microphones and can also access patient data like blood oxygen levels. Telepresence robots, originally designed for offices, are becoming an invaluable tool for medical workers treating highly infectious diseases like COVID-19, reducing the risk that they’ll contract the pathogen they’re fighting against.

Photo: Miguel Medina/AFP/Getty Images

HELP FROM ABOVE

Photo: Zipline

Authorities in several countries attempted to use drones to enforce lockdowns and social-distancing rules, but the effectiveness of such measures remains unclear. A better use of drones was for making deliveries. In the United States, startup Zipline deployed its fixed-wing autonomous aircraft to connect two medical facilities 17 kilometers apart. For the staff at the Huntersville Medical Center, in North Carolina, masks, gowns, and gloves literally fell from the skies. The hope is that drones like Zipline’s will one day be able to deliver other kinds of critical materials, transport test samples, and distribute drugs and vaccines.

Photos: Zipline

SPECIAL DELIVERY
It’s not quite a robot takeover, but the streets and sidewalks of dozens of cities around the world have seen a proliferation of hurrying wheeled machines. Delivery robots are now in high demand as online orders continue to skyrocket.

In Hamburg, the six-wheeled robots developed by Starship Technologies navigate using cameras, GPS, and radar to bring groceries to customers.

Photo: Christian Charisius/Picture Alliance/Getty Images

In Medellín, Colombia, a startup called Rappi deployed a fleet of robots, built by Kiwibot, to deliver takeout to people in lockdown.

Photo: Joaquin Sarmiento/AFP/Getty Images

China’s JD.com, one of the country’s largest e-commerce companies, is using 20 robots to transport goods in Changsha, Hunan province; each vehicle has 22 separate compartments, which customers unlock using face authentication.

Photos: TPG/Getty Images

LIFE THROUGH ROBOTS
Robots can’t replace real human interaction, of course, but they can help people feel more connected at a time when meetings and other social activities are mostly on hold.

In Ostend, Belgium, ZoraBots brought one of its waist-high robots, equipped with cameras, microphones, and a screen, to a nursing home, allowing residents like Jozef Gouwy to virtually communicate with loved ones despite a ban on in-person visits.

Photo: Yves Herman/Reuters

In Manila, nearly 200 high school students took turns “teleporting” into a tall wheeled robot, developed by the school’s robotics club, to walk on stage during their graduation ceremony.

Photo: Ezra Acayan/Getty Images

And while Japan’s Chiba Zoological Park was temporarily closed due to the pandemic, the zoo used an autonomous robotic vehicle called RakuRo, equipped with 360-degree cameras, to offer virtual tours to children quarantined at home.

Photo: Tomohiro Ohsumi/Getty Images

SENTRY ROBOTS
Offices, stores, and medical centers are adopting robots as enforcers of a new coronavirus code.

At Fortis Hospital in Bangalore, India, a robot called Mitra uses a thermal camera to perform a preliminary screening of patients.

Photo: Manjunath Kiran/AFP/Getty Images

In Tunisia, the police use a tanklike robot to patrol the streets of its capital city, Tunis, verifying that citizens have permission to go out during curfew hours.

Photo: Khaled Nasraoui/Picture Alliance/Getty Images

And in Singapore, the Bishan-Ang Moh Kio Park unleashed a Spot robot dog, developed by Boston Dynamics, to search for social-distancing violators. Spot won’t bark at them but will rather play a recorded message reminding park-goers to keep their distance.

Photo: Roslan Rahman/AFP/Getty Images

This article appears in the October 2020 print issue as “How Robots Became Essential Workers.” Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots