Tag Archives: sports
#436466 How Two Robots Learned to Grill and ...
The list of things robots can do seems to be growing by the week. They can play sports, help us explore outer space and the deep sea, take over some of our boring everyday tasks, and even assemble Ikea furniture.
Now they can add one more accomplishment to the list: grilling and serving a hot dog.
It seems like a pretty straightforward task, and as far as grilling goes, hot dogs are about as easy as it gets (along with, maybe, burgers? Hot dogs require more rotation, but it’s easier to tell when they’re done since they’re lighter in color).
Let’s paint a picture: you’re manning the grill at your family’s annual Fourth of July celebration. You’ve got a 10-pack of plump, juicy beef franks and a hungry crowd of relatives whose food-to-alcohol ratio is getting pretty skewed—they need some solid calories, pronto. What are the steps you need to take to get those franks from package to plate?
Each one needs to be placed on the grill, rotated every couple minutes for even cooking, removed from the grill when you deem it’s done, then—if you’re the kind of guy or gal who goes the extra mile—placed in a bun and dressed with ketchup, mustard, pickles, and the like before being handed over to salivating, too-loud Uncle Hector or sweet, bored Cousin Margaret.
While carrying out your grillmaster duties, you know better than to drop the hot dogs on the ground, leave them cooking on one side for too long, squeeze them to the point of breaking or bursting, and any other hot-dog-ruining amateur moves.
But for a robot, that’s a lot to figure out, especially if they have no prior knowledge of grilling hot dogs (which, well, most robots don’t).
As described in a paper published in this week’s Science Robotics, a team from Boston University programmed two robotic arms to use reinforcement learning—a branch of machine learning in which software gathers information about its environment then learns from it by replaying its experiences and incorporating rewards—to cook and serve hot dogs.
The team used a set of formulas to specify and combine tasks (“pick up hot dog and place on the grill”), meet safety requirements (“always avoid collisions”), and incorporate general prior knowledge (“you cannot pick up another hot dog if you are already holding one”).
Baxter and Jaco—as the two robots were dubbed—were trained through computer simulations. The paper’s authors emphasized their use of what they call a “formal specification language” for training the software, with the aim of generating easily-interpretable task descriptions. In reinforcement learning, they explain, being able to understand how a reward function influences an AI’s learning process is a key component in understanding the system’s behavior—but most systems lack this quality, and are thus likely to be lumped into the ‘black box’ of AI.
The robots’ decisions throughout the hot dog prep process—when to turn a hot dog, when to take it off the grill, and so on—are, the authors write, “easily interpretable from the beginning because the language is very similar to plain English.”
Besides being a step towards more explainable AI systems, Baxter and Jaco are another example of fast-food robots—following in the footsteps of their burger and pizza counterparts—that may take over some repetitive manual tasks currently performed by human workers. As robots’ capabilities improve through incremental progress like this, they’ll be able to take on additional tasks.
In a not-so-distant future, then, you just may find yourself throwing back drinks with Uncle Hector and Cousin Margaret while your robotic replacement mans the grill, churning out hot dogs that are perfectly cooked every time.
Image Credit: Image by Muhammad Ribkhan from Pixabay Continue reading
#435492 Humanoid table tennis players
Trust the Chinese to come up with Android Robots for one of their favorite sports! The robot can also play a human opponent, using either forehand or backhand strokes.
#435119 Are These Robots Better Than You at ...
Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.
But warehouses and offices aren’t the only places where robots are lining up next to humans.
Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.
Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.
As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.
Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.
Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.
Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.
Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.
Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.
The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.
Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.
It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.
Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.
In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.
Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.
In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.
On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.
We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.
However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.
Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading