Tag Archives: spirit

#437630 How Toyota Research Envisions the Future ...

Yesterday, the Toyota Research Institute (TRI) showed off some of the projects that it’s been working on recently, including a ceiling-mounted robot that could one day help us with household chores. That system is just one example of how TRI envisions the future of robotics and artificial intelligence. As TRI CEO Gill Pratt told us, the company is focusing on robotics and AI technology for “amplifying, rather than replacing, human beings.” In other words, Toyota wants to develop robots not for convenience or to do our jobs for us, but rather to allow people to continue to live and work independently even as we age.

To better understand Toyota’s vision of robotics 15 to 20 years from now, it’s worth watching the 20-minute video below, which depicts various scenarios “where the application of robotic capabilities is enabling members of an aging society to live full and independent lives in spite of the challenges that getting older brings.” It’s a long video, but it helps explains TRI’s perspective on how robots will collaborate with humans in our daily lives over the next couple of decades.

Those are some interesting conceptual telepresence-controlled bipeds they’ve got running around in that video, right?

For more details, we sent TRI some questions on how it plans to go from concepts like the ones shown in the video to real products that can be deployed in human environments. Below are answers from TRI CEO Gill Pratt, who is also chief scientist for Toyota Motor Corp.; Steffi Paepcke, senior UX designer at TRI; and Max Bajracharya, VP of robotics at TRI.

IEEE Spectrum: TRI seems to have a more explicit focus on eventual commercialization than most of the robotics research that we cover. At what point TRI starts to think about things like reliability and cost?

Photo: TRI

Toyota is exploring robots capable of manipulating dishes in a sink and a dishwasher, performing experiments and simulations to make sure that the robots can handle a wide range of conditions.

Gill Pratt: It’s a really interesting question, because the normal way to think about this would be to say, well, both reliability and cost are product development tasks. But actually, we need to think about it at the earliest possible stage with research as well. The hardware that we use in the laboratory for doing experiments, we don’t worry about cost there, or not nearly as much as you’d worry about for a product. However, in terms of what research we do, we very much have to think about, is it possible (if the research is successful) for it to end up in a product that has a reasonable cost. Because if a customer can’t afford what we come up with, maybe it has some academic value but it’s not actually going to make a difference in their quality of life in the real world. So we think about cost very much from the beginning.

The same is true with reliability. Right now, we’re working very hard to make our control techniques robust to wide variations in the environment. For instance, in work that Russ Tedrake is doing with manipulating dishes in a sink and a dishwasher, both in physical testing and in simulation, we’re doing thousands and now millions of different experiments to make sure that we can handle the edge cases and it works over a very wide range of conditions.

A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time. Some researchers have been very good about showing the blooper reel too, to show that some of the time, robots don’t work.

“A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time.”
—Gill Pratt, TRI

In the spirit of sharing things that didn’t work, can you tell us a bit about some of the robots that TRI has had under development that didn’t make it into the demo yesterday because they were abandoned along the way?

Steffi Paepcke: We’re really looking at how we can connect people; it can be hard to stay in touch and see our loved ones as much as we would like to. There have been a few prototypes that we’ve worked on that had to be put on the shelf, at least for the time being. We were exploring how to use light so that people could be ambiently aware of one another across distances. I was very excited about that—the internal name was “glowing orb.” For a variety of reasons, it didn’t work out, but it was really fascinating to investigate different modalities for keeping in touch.

Another prototype we worked on—we found through our research that grocery shopping is obviously an important part of life, and for a lot of older adults, it’s not necessarily the right answer to always have groceries delivered. Getting up and getting out of the house keeps you physically active, and a lot of people prefer to continue doing it themselves. But it can be challenging, especially if you’re purchasing heavy items that you need to transport. We had a prototype that assisted with grocery shopping, but when we pivoted our focus to Japan, we found that the inside of a Japanese home really needs to stay inside, and the outside needs to stay outside, so a robot that traverses both domains is probably not the right fit for a Japanese audience, and those were some really valuable lessons for us.

Photo: TRI

Toyota recently demonstrated a gantry robot that would hang from the ceiling to perform tasks like wiping surfaces and clearing clutter.

I love that TRI is exploring things like the gantry robot both in terms of near-term research and as part of its long-term vision, but is a robot like this actually worth pursuing? Or more generally, what’s the right way to compromise between making an environment robot friendly, and asking humans to make changes to their homes?

Max Bajracharya: We think a lot about the problems that we’re trying to address in a holistic way. We don’t want to just give people a robot, and assume that they’re not going to change anything about their lifestyle. We have a lot of evidence from people who use automated vacuum cleaners that people will adapt to the tools you give them, and they’ll change their lifestyle. So we want to think about what is that trade between changing the environment, and giving people robotic assistance and tools.

We certainly think that there are ways to make the gantry system plausible. The one you saw today is obviously a prototype and does require significant infrastructure. If we’re going to retrofit a home, that isn’t going to be the way to do it. But we still feel like we’re very much in the prototype phase, where we’re trying to understand whether this is worth it to be able to bypass navigation challenges, and coming up with the pros and cons of the gantry system. We’re evaluating whether we think this is the right approach to solving the problem.

To what extent do you think humans should be either directly or indirectly in the loop with home and service robots?

Bajracharya: Our goal is to amplify people, so achieving this is going to require robots to be in a loop with people in some form. One thing we have learned is that using people in a slow loop with robots, such as teaching them or helping them when they make mistakes, gives a robot an important advantage over one that has to do everything perfectly 100 percent of the time. In unstructured human environments, robots are going to encounter corner cases, and are going to need to learn to adapt. People will likely play an important role in helping the robots learn. Continue reading

Posted in Human Robots

#436573 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
The Messy, Secretive Reality Behind OpenAI’s Bid to Save the World
Karen Hao | MIT Technology Review
“The AI moonshot was founded in the spirit of transparency. This is the inside story of how competitive pressure eroded that idealism. …Yet OpenAI is still a bastion of talent and cutting-edge research, filled with people who are sincerely striving to work for the benefit of humanity. In other words, it still has the most important elements, and there’s still time for it to change.”

ROBOTICS
3D Printed Four-Legged Robot Is Ready to Take on Spot—at a Lower Price
Luke Dormehl | Digital Trends
“[Ghost Robotics and Origin] have teamed up to develop a new line of robots, called the Spirit Series, which offer impressively capable four-legged robots, but which can be printed using additive manufacturing at a fraction of the cost and speed of traditional manufacturing approaches.”

PRIVACY
The Studs on This Punk Bracelet Are Actually Microphone-Jamming Ultrasonic Speakers
Andrew Liszewski | Gizmodo
“You can prevent facial recognition cameras from identifying you by wearing face paint, masks, or sometimes just a pair of oversized sunglasses. Keeping conversations private from an ever-growing number of microphone-equipped devices isn’t quite as easy, but researchers have created what could be the first wearable that actually helps increase your privacy.”

TRANSPORTATION
Iron Man Dreams Are Closer to Becoming a Reality Thanks to This New Jetman Dubai Video
Julia Alexander | The Verge
“Tony Stark may have destroyed his Iron Man suits in Iron Man 3 (only to bring out a whole new line in Avengers: Age of Ultron), but Jetman Dubai’s Iron Man-like dreams of autonomous human flight are realer than ever. A new video published by the company shows pilot Vince Reffet using a jet-powered, carbon-fiber suit to launch off the ground and fly 6,000 feet in the air.”

TECHNOLOGY
Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

SCIENCE
The Very Large Array Will Search for Evidence of Extraterrestrial Life
Georgina Torbet | Digital Trends
“To begin the project, an interface will be added to the NRAO’s Very Large Array (VLA) in New Mexico to search for events or structures which could indicate the presence of life, such as laser beams, structures built around stars, indications of constructed satellites, or atmospheric chemicals produced by industry.”

SCIENCE FICTION
The Terrible Truth About Star Trek’s Transporters
Cassidy Ward | SyFy Wire
“The fact that you are scanned, deconstructed, and rebuilt almost immediately thereafter only creates the illusion of continuity. In reality, you are killed and then something exactly like you is born, elsewhere. There’s a whole philosophical debate about whether this really matters. If the person constructed on the other end is identical to you, down to the atomic level, is there any measurable difference from it being actually you?”

Image Credit: Samuel Giacomelli / Unsplash Continue reading

Posted in Human Robots

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots

#435824 A Q&A with Cruise’s head of AI, ...

In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.

Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.

Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.

Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.

IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?

Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.

“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”

I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.

In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.

There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.

IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?

Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.

Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.

I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.

The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.

Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.

IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?

Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.

And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”

IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?

Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.

“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”

Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.

It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.

I can see how I can spend a lifetime career trying to solve this problem.

IEEE Spectrum: Why are you doing most of your development in San Francisco?

Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.

“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”

[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.

A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading

Posted in Human Robots

#435726 This Is the Most Powerful Robot Arm Ever ...

Last month, engineers at NASA’s Jet Propulsion Laboratory wrapped up the installation of the Mars 2020 rover’s 2.1-meter-long robot arm. This is the most powerful arm ever installed on a Mars rover. Even though the Mars 2020 rover shares much of its design with Curiosity, the new arm was redesigned to be able to do much more complex science, drilling into rocks to collect samples that can be stored for later recovery.

JPL is well known for developing robots that do amazing work in incredibly distant and hostile environments. The Opportunity Mars rover, to name just one example, had a 90-day planned mission but remained operational for 5,498 days in a robot unfriendly place full of dust and wild temperature swings where even the most basic maintenance or repair is utterly impossible. (Its twin rover, Spirit, operated for 2,269 days.)

To learn more about the process behind designing robotic systems that are capable of feats like these, we talked with Matt Robinson, one of the engineers who designed the Mars 2020 rover’s new robot arm.

The Mars 2020 rover (which will be officially named through a public contest which opens this fall) is scheduled to launch in July of 2020, landing in Jezero Crater on February 18, 2021. The overall design is similar to the Mars Science Laboratory (MSL) rover, named Curiosity, which has been exploring Gale Crater on Mars since August 2012, except Mars 2020 will be a bit bigger and capable of doing even more amazing science. It will outweigh Curiosity by about 150 kilograms, but it’s otherwise about the same size, and uses the same type of radioisotope thermoelectric generator for power. Upgraded aluminum wheels will be more durable than Curiosity’s wheels, which have suffered significant wear. Mars 2020 will land on Mars in the same way that Curiosity did, with a mildly insane descent to the surface from a rocket-powered hovering “skycrane.”

Photo: NASA/JPL-Caltech

Last month, engineers at NASA's Jet Propulsion Laboratory install the main robotic arm on the Mars 2020 rover. Measuring 2.1 meters long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret.

Mars 2020 really steps it up when it comes to science. The most interesting new capability (besides serving as the base station for a highly experimental autonomous helicopter) is that the rover will be able to take surface samples of rock and soil, put them into tubes, seal the tubes up, and then cache the tubes on the surface for later retrieval (and potentially return to Earth for analysis). Collecting the samples is the job of a drill on the end of the robot arm that can be equipped with a variety of interchangeable bits, but the arm holds a number of other instruments as well. A “turret” can swap between the drill, a mineral identification sensor suite called SHERLOC, and an X-ray spectrometer and camera called PIXL. Fundamentally, most of Mars 2020’s science work is going to depend on the arm and the hardware that it carries, both in terms of close-up surface investigations and collecting samples for caching.

Matt Robinson is the Deputy Delivery Manager for the Sample Caching System on the Mars 2020 rover, which covers the robotic arm itself, the drill at the end of the arm, and the sample caching system within the body of the rover that manages the samples. Robinson has been at JPL since 2001, and he’s worked on the Mars Phoenix Lander mission as the robotic arm flight software developer and robotic arm test and operations engineer, as well as on Curiosity as the robotic arm test and operations lead engineer.

We spoke with Robinson about how the Mars 2020 arm was designed, and what it’s like to be building robots for exploring other planets.

IEEE Spectrum: How’d you end up working on robots at JPL?

Matt Robinson: When I was a grad student, my focus was on vision-based robotics research, so the kinds of things they do at JPL, or that we do at JPL now, were right within my wheelhouse. One of my advisors in grad school had a former student who was out here at JPL, so that’s how I made the contact. But I was very excited to come to JPL—as a young grad student working in robotics, space robotics was where it’s at.

For a robotics engineer, working in space is kind of the gold standard. You’re working in a challenging environment and you have to be prepared for any time of eventuality that may occur. And when you send your robot out to space, there’s no getting it back.

Once the rover arrives on Mars and you receive pictures back from it operating, there’s no greater feeling. You’ve built something that is now working 200+ million miles away. It’s an awesome experience! I have to pinch myself sometimes with the job I do. Working at JPL on space robotics is the holy grail for a roboticist.

What’s different about designing an arm for a rover that will operate on Mars?

We spent over five years designing, manufacturing, assembling, and testing the arm. Scientists have defined the high-level goals for what the mission has to do—acquire core samples and process them for return, carry science instruments on the arm to help determine what rocks to sample, and so on. We, as engineers, define the next level of requirements that support those goals.

When you’re building a robotic arm for another planet, you want to design something that is robust to the environment as well as robust from fault-protection standpoint. On Mars, we’re talking about an environment where the temperature can vary 100 degrees Celsius over the course of the day, so it’s very challenging thermally. With force sensing for instance, that’s a major problem. Force sensors aren’t typically designed to operate or even survive in temperature ranges that we’re talking about. So a lot of effort has to go into force sensor design and testing.

And then there’s a do-no-harm aspect—you’re sending this piece of hardware 200 million miles away, and you can’t get it back, so you want to make sure your hardware and software are robust and cannot do any harm to the system. It’s definitely a change in mindset from a terrestrial robot, where if you make a mistake, you can repair it.

“Once the rover arrives on Mars and you receive pictures back from it, there’s no greater feeling . . . I have to pinch myself sometimes with the job I do.”
—Matt Robinson, NASA JPL

How do you decide how much redundancy is enough?

That’s always a big question. It comes down to a couple of things, typically: mass and volume. You have a certain amount of mass that’s allocated to the robotic arm and we have a volume that it has to fit within, so those are often the drivers of the amount of redundancy that you can fit. We also have a lot of experience with sending arms to other planets, and at the beginning of projects, we establish a number of requirements that the design has to meet, and that’s where the redundancy is captured.

How much is the design of the arm driven by this need for redundancy, as opposed to trying to pack in all of the instrumentation that you want to have on there to do as much science as possible?

The requirements were driven by a couple of things. We knew roughly how big the instruments on the end of the arm were going to be, so the arm design is partially driven by that, because as the instruments get bigger and heavier, the arm has to get bigger and stronger. We have our coring drill at the end of the arm, and coring requires a certain level of force, so the arm has to be strong enough to do that. Those all became requirements that drove the design of the arm. On top of that, there was also that this arm also has to operate within the Martian environment, so you have things like the temperature changes and thermal expansion—you have to design for that as well. It’s a combination of both, really.

You were a test engineer for the arm used on the MSL rover. What did you learn from Spirit and Opportunity that informed the design of the arm on Curiosity?

Spirit and Opportunity did not have any force-sensing on the robotic arm. We had contact sensors that were good enough. Spirit and Opportunity’s arms were used to place instruments, that’s all it had to do, primarily. When you’re talking about actually acquiring samples, it’s not a matter of just placing the tool—you also have to apply forces to the environment. And once you start doing that, you really need a force sensor to protect you, and also to determine how much load to apply. So that was a big theme, a big difference between MSL and Spirit and Opportunity.

The size grew a lot too. If you look at Spirit and Opportunity, they’re the size of a riding lawnmower. Curiosity and the Mars 2020 rovers are the size of a small car. The Spirit and Opportunity arm was under a meter long, and the 2020 arm is twice that, and it has to apply forces that are much higher than the Spirit and Opportunity arm. From Curiosity to 2020, the payload of the arm grew by 50 percent, but the mass of the arm did not grow a whole lot, because our mass budget was kind of tight. We had to design an arm that was stronger, that had more capability, without adding more mass. That was a big challenge. We were fairly efficient on Curiosity, but on 2020, we sharpened the pencil even more.

Photo: NASA/JPL-Caltech

Three generations of Mars rovers developed at NASA’s Jet Propulsion Laboratory. Front and center: Sojourner rover, which landed on Mars in 1997 as part of the Mars Pathfinder Project. Left: Mars Exploration Rover Project rover (Spirit and Opportunity), which landed on Mars in 2004. Right: Mars Science Laboratory rover (Curiosity), which landed on Mars in August 2012.

MSL used its arm to drill into rocks like Mars 2020 will—how has the experience of operating MSL on Mars changed your thinking on how to make that work?

On MSL, the force sensor was used primarily for fault protection, just to protect the arm from being overloaded. [When drilling] we used a stiffness model of the arm to apply the force. The force sensor was only used in case you overloaded, and that’s very different from doing active force control, where you’re actually using the force sensor in a control loop.

On Mars 2020, we’re taking it to the next step, using the force sensor to actually actively control the level of force, both for pushing on the ground and for doing bit exchange. That’s a key point because fault protection to prevent damage usually has larger error bars. When you’re trying to actually push on the environment to apply force, and you’re doing active force control, the force sensor has to be significantly more accurate.

So a big thing that we learned on MSL—it was the first time we’d actually flown a force sensor, and we learned a lot about how to design and test force sensors to be used on the surface of Mars.

How do you effectively test the Mars 2020 arm on Earth?

That’s a good question. The arm was designed to operate on either Earth or Mars. It’s strong enough to do both. We also have a stiffness model of the arm which includes allows us to compensate for differences in gravity. For testing, we make two copies of the robotic arm. We have our copy that we’re going to fly to Mars, which is what we call our flight model, and we have our engineering model. They’re effectively duplicates of each other. The engineering arm stays on earth, so even once we’ve sent the flight model to Mars, we can continue to test. And if something were to happen, if say a drill bit got stuck in the ground on Mars, we could try to replicate those conditions on Earth with our engineering model arm, and use that to test out different scenarios to overcome the problem.

How much autonomy will the arm have?

We have different models of autonomy. We have pretty high levels flight software and, for instance, we have a command that just says “dock,” that moves the arm does all the force control to the dock the arm with the carousel. For surface interaction, we have stereo cameras on the rover, and those cameras allow us to generate 3D terrain models. Using those 3D terrain models, scientists can select a target on that surface, and then we can position the arm on the target.

Scientists like to select the particular sample targets, because they have very specific types of rocks they’re looking for to sample from. On 2020, we’re providing the ability for the next level of autonomy for the rover to drive up to an area and at least do the initial surveying of that area, so the scientists can select the specific target. So the way that that would happen is, if there’s an area off in the distance that the scientists find potentially interesting, the rover will autonomously drive up to it, and deploy the arm and take all the pictures so that we can generate those 3D terrain models and then the next day the scientists can pick the specific target they want. It’s really cool.

JPL is famous for making robots that operate for far longer than NASA necessarily plans for. What’s it like designing hardware and software for a system that will (hopefully) become part of that legacy?

The way that I look at it is, when you’re building an arm that’s going to go to another planet, all the things that could go wrong… You have to build something that’s robust and that can survive all that. It’s not that we’re trying to overdesign arms so that they’ll end up lasting much, much longer, it’s that, given all the things that you can encounter within a fairly unknown environment, and the level of robustness of the design you have to apply, it just so happens we end up with designs that end up lasting a lot longer than they do. Which is great, but we’re not held to that, although we’re very excited when we see them last that long. Without any calibration, without any maintenance, exactly, it’s amazing. They show their wear over time, but they still operate, it’s super exciting, it’s very inspirational to see.

[ Mars 2020 Rover ] Continue reading

Posted in Human Robots