Tag Archives: spectrum
#437554 Ending the COVID-19 Pandemic
Photo: F.J. Jimenez/Getty Images
The approach of a new year is always a time to take stock and be hopeful. This year, though, reflection and hope are more than de rigueur—they’re rejuvenating. We’re coming off a year in which doctors, engineers, and scientists took on the most dire public threat in decades, and in the new year we’ll see the greatest results of those global efforts. COVID-19 vaccines are just months away, and biomedical testing is being revolutionized.
At IEEE Spectrum we focus on the high-tech solutions: Can artificial intelligence (AI) be used to diagnose COVID-19 using cough recordings? Can mathematical modeling determine whether preventive measures against COVID-19 work? Can big data and AI provide accurate pandemic forecasting?
Consider our story “AI Recognizes COVID-19 in the Sound of a Cough,” reported by Megan Scudellari in our Human OS blog. Using a cellphone-recorded cough, machine-learning models can now detect coronavirus with 90 percent accuracy, even in people with no symptoms. It’s a remarkable research milestone. This AI model sifts through hundreds of factors to distinguish the COVID-19 cough from those of bronchitis, whooping cough, and asthma.
But while such high-tech triumphs give us hope, the no-tech solutions are mostly what we have to work with. Soon, as our Numbers Don’t Lie columnist, Vaclav Smil, pointed out in a recent email, we will have near-instantaneous home testing, and we will have an ability to use big data to crunch every move and every outbreak. But we are nowhere near that yet. So let’s use, as he says, some old-fashioned kindergarten epidemiology, the no-tech measures, while we work to get there:
Masks: Wear them. If we all did so, we could cut transmission by two-thirds, perhaps even 80 percent.
Hands: Wash them.
Social distancing: If we could all stay home for two weeks, we could see enormous declines in COVID-19 transmission.
These are all time-tested solutions, proven effective ages ago in countless outbreaks of diseases including typhoid and cholera. They’re inexpensive and easy to prescribe, and the regimens are easy to follow.
The conflict between public health and individual rights and privacy, however, is less easy to resolve. Even during the pandemic of 1918–19, there was widespread resistance to mask wearing and social distancing. Fifty million people died—675,000 in the United States alone. Today, we are up to 240,000 deaths in the United States, and the end is not in sight. Antiflu measures were framed in 1918 as a way to protect the troops fighting in World War I, and people who refused to wear masks were called out as “dangerous slackers.” There was a world war, and yet it was still hard to convince people of the need for even such simple measures.
Personally, I have found the resistance to these easy fixes startling. I wouldn’t want maskless, gloveless doctors taking me through a surgical procedure. Or waltzing in from lunch without washing their hands. I’m sure you wouldn’t, either.
Science-based medicine has been one of the world’s greatest and most fundamental advances. In recent years, it has been turbocharged by breakthroughs in genetics technologies, advanced materials, high-tech diagnostics, and implants and other electronics-based interventions. Such leaps have already saved untold lives, but there’s much more to be done. And there will be many more pandemics ahead for humanity.
< Back to IEEE COVID-19 Resources Continue reading
#437337 6G Will Be 100 Times Faster Than ...
Though 5G—a next-generation speed upgrade to wireless networks—is scarcely up and running (and still nonexistent in many places) researchers are already working on what comes next. It lacks an official name, but they’re calling it 6G for the sake of simplicity (and hey, it’s tradition). 6G promises to be up to 100 times faster than 5G—fast enough to download 142 hours of Netflix in a second—but researchers are still trying to figure out exactly how to make such ultra-speedy connections happen.
A new chip, described in a paper in Nature Photonics by a team from Osaka University and Nanyang Technological University in Singapore, may give us a glimpse of our 6G future. The team was able to transmit data at a rate of 11 gigabits per second, topping 5G’s theoretical maximum speed of 10 gigabits per second and fast enough to stream 4K high-def video in real time. They believe the technology has room to grow, and with more development, might hit those blistering 6G speeds.
NTU final year PhD student Abhishek Kumar, Assoc Prof Ranjan Singh and postdoc Dr Yihao Yang. Dr Singh is holding the photonic topological insulator chip made from silicon, which can transmit terahertz waves at ultrahigh speeds. Credit: NTU Singapore
But first, some details about 5G and its predecessors so we can differentiate them from 6G.
Electromagnetic waves are characterized by a wavelength and a frequency; the wavelength is the distance a cycle of the wave covers (peak to peak or trough to trough, for example), and the frequency is the number of waves that pass a given point in one second. Cellphones use miniature radios to pick up electromagnetic signals and convert those signals into the sights and sounds on your phone.
4G wireless networks run on millimeter waves on the low- and mid-band spectrum, defined as a frequency of a little less (low-band) and a little more (mid-band) than one gigahertz (or one billion cycles per second). 5G kicked that up several notches by adding even higher frequency millimeter waves of up to 300 gigahertz, or 300 billion cycles per second. Data transmitted at those higher frequencies tends to be information-dense—like video—because they’re much faster.
The 6G chip kicks 5G up several more notches. It can transmit waves at more than three times the frequency of 5G: one terahertz, or a trillion cycles per second. The team says this yields a data rate of 11 gigabits per second. While that’s faster than the fastest 5G will get, it’s only the beginning for 6G. One wireless communications expert even estimates 6G networks could handle rates up to 8,000 gigabits per second; they’ll also have much lower latency and higher bandwidth than 5G.
Terahertz waves fall between infrared waves and microwaves on the electromagnetic spectrum. Generating and transmitting them is difficult and expensive, requiring special lasers, and even then the frequency range is limited. The team used a new material to transmit terahertz waves, called photonic topological insulators (PTIs). PTIs can conduct light waves on their surface and edges rather than having them run through the material, and allow light to be redirected around corners without disturbing its flow.
The chip is made completely of silicon and has rows of triangular holes. The team’s research showed the chip was able to transmit terahertz waves error-free.
Nanyang Technological University associate professor Ranjan Singh, who led the project, said, “Terahertz technology […] can potentially boost intra-chip and inter-chip communication to support artificial intelligence and cloud-based technologies, such as interconnected self-driving cars, which will need to transmit data quickly to other nearby cars and infrastructure to navigate better and also to avoid accidents.”
Besides being used for AI and self-driving cars (and, of course, downloading hundreds of hours of video in seconds), 6G would also make a big difference for data centers, IoT devices, and long-range communications, among other applications.
Given that 5G networks are still in the process of being set up, though, 6G won’t be coming on the scene anytime soon; a recent whitepaper on 6G from Japanese company NTTDoCoMo estimates we’ll see it in 2030, pointing out that wireless connection tech generations have thus far been spaced about 10 years apart; we got 3G in the early 2000s, 4G in 2010, and 5G in 2020.
In the meantime, as 6G continues to develop, we’re still looking forward to the widespread adoption of 5G.
Image Credit: Hans Braxmeier from Pixabay Continue reading
#437222 China and AI: What the World Can Learn ...
China announced in 2017 its ambition to become the world leader in artificial intelligence (AI) by 2030. While the US still leads in absolute terms, China appears to be making more rapid progress than either the US or the EU, and central and local government spending on AI in China is estimated to be in the tens of billions of dollars.
The move has led—at least in the West—to warnings of a global AI arms race and concerns about the growing reach of China’s authoritarian surveillance state. But treating China as a “villain” in this way is both overly simplistic and potentially costly. While there are undoubtedly aspects of the Chinese government’s approach to AI that are highly concerning and rightly should be condemned, it’s important that this does not cloud all analysis of China’s AI innovation.
The world needs to engage seriously with China’s AI development and take a closer look at what’s really going on. The story is complex and it’s important to highlight where China is making promising advances in useful AI applications and to challenge common misconceptions, as well as to caution against problematic uses.
Nesta has explored the broad spectrum of AI activity in China—the good, the bad, and the unexpected.
The Good
China’s approach to AI development and implementation is fast-paced and pragmatic, oriented towards finding applications which can help solve real-world problems. Rapid progress is being made in the field of healthcare, for example, as China grapples with providing easy access to affordable and high-quality services for its aging population.
Applications include “AI doctor” chatbots, which help to connect communities in remote areas with experienced consultants via telemedicine; machine learning to speed up pharmaceutical research; and the use of deep learning for medical image processing, which can help with the early detection of cancer and other diseases.
Since the outbreak of Covid-19, medical AI applications have surged as Chinese researchers and tech companies have rushed to try and combat the virus by speeding up screening, diagnosis, and new drug development. AI tools used in Wuhan, China, to tackle Covid-19 by helping accelerate CT scan diagnosis are now being used in Italy and have been also offered to the NHS in the UK.
The Bad
But there are also elements of China’s use of AI that are seriously concerning. Positive advances in practical AI applications that are benefiting citizens and society don’t detract from the fact that China’s authoritarian government is also using AI and citizens’ data in ways that violate privacy and civil liberties.
Most disturbingly, reports and leaked documents have revealed the government’s use of facial recognition technologies to enable the surveillance and detention of Muslim ethnic minorities in China’s Xinjiang province.
The emergence of opaque social governance systems that lack accountability mechanisms are also a cause for concern.
In Shanghai’s “smart court” system, for example, AI-generated assessments are used to help with sentencing decisions. But it is difficult for defendants to assess the tool’s potential biases, the quality of the data, and the soundness of the algorithm, making it hard for them to challenge the decisions made.
China’s experience reminds us of the need for transparency and accountability when it comes to AI in public services. Systems must be designed and implemented in ways that are inclusive and protect citizens’ digital rights.
The Unexpected
Commentators have often interpreted the State Council’s 2017 Artificial Intelligence Development Plan as an indication that China’s AI mobilization is a top-down, centrally planned strategy.
But a closer look at the dynamics of China’s AI development reveals the importance of local government in implementing innovation policy. Municipal and provincial governments across China are establishing cross-sector partnerships with research institutions and tech companies to create local AI innovation ecosystems and drive rapid research and development.
Beyond the thriving major cities of Beijing, Shanghai, and Shenzhen, efforts to develop successful innovation hubs are also underway in other regions. A promising example is the city of Hangzhou, in Zhejiang Province, which has established an “AI Town,” clustering together the tech company Alibaba, Zhejiang University, and local businesses to work collaboratively on AI development. China’s local ecosystem approach could offer interesting insights to policymakers in the UK aiming to boost research and innovation outside the capital and tackle longstanding regional economic imbalances.
China’s accelerating AI innovation deserves the world’s full attention, but it is unhelpful to reduce all the many developments into a simplistic narrative about China as a threat or a villain. Observers outside China need to engage seriously with the debate and make more of an effort to understand—and learn from—the nuances of what’s really happening.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Dominik Vanyi on Unsplash Continue reading