Tag Archives: spaces

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots

#437639 Boston Dynamics’ Spot Is Helping ...

In terms of places where you absolutely want a robot to go instead of you, what remains of the utterly destroyed Chernobyl Reactor 4 should be very near the top of your list. The reactor, which suffered a catastrophic meltdown in 1986, has been covered up in almost every way possible in an effort to keep its nuclear core contained. But eventually, that nuclear material is going to have to be dealt with somehow, and in order to do that, it’s important to understand which bits of it are just really bad, and which bits are the actual worst. And this is where Spot is stepping in to help.

The big open space that Spot is walking through is right next to what’s left of Reactor 4. Within six months of the disaster, Reactor 4 was covered in a sarcophagus made of concrete and steel to try and keep all the nasty nuclear fuel from leaking out more than it already had, and it still contains “30 tons of highly contaminated dust, 16 tons of uranium and plutonium, and 200 tons of radioactive lava.” Oof. Over the next 10 years, the sarcophagus slowly deteriorated, and despite the addition of that gigantic network of steel support beams that you can see in the video, in the late 1990s it was decided to erect an enormous building over the entire mess to try and stabilize it for as long as possible.

Reactor 4 is now snugly inside the massive New Safe Confinement (NSC) structure, and the idea is that eventually, the structure will allow for the safe disassembly of what’s left of the reactor, although nobody is quite sure how to do that. This is all just to say that the area inside of the containment structure offers a lot of good opportunities for robots to take over from humans.

This particular Spot is owned by the U.K. Atomic Energy Authority, and was packed off to Russia with the assistance of the Robotics and Artificial Intelligence in Nuclear (RAIN) initiative and the National Centre for Nuclear Robotics. Dr. Dave Megson-Smith, who is a researcher at the University of Bristol, in the U.K., and part of the Hot Robotics Facility at the National Nuclear User Facility, was one of the scientists lucky enough to accompany Spot on its adventure. Megson-Smith specializes in sensor development, and he equipped Spot with a collimated radiation sensor in addition to its mapping payload. “We actually built a map of the radiation coming out of the front wall of Chernobyl power plant as we were in there with it,” Megson-Smith told us, and was able to share this picture, which shows a map of gamma photon count rate:

Image: University of Bristol

Researchers equipped Spot with a collimated radiation sensor and use one of the data readings (gamma photon count rate) to create a map of the radiation coming out of the front wall of the Chernobyl power plant.

So what’s the reason you’d want to use a very expensive legged robot to wander around what looks like a very flat and robot friendly floor? As it turns out, the floor is very dusty in there, and a priority inside the NSC is to keep dust down as much as possible, since the dust is radioactive and gets on everything and is consequently the easiest way for radioactivity to escape the NSC. “You want to minimize picking up material, so we consider the total contact surface area,” says Megson-Smith. “If you use a legged system rather than a wheeled or tracked system, you have a much smaller footprint and you disturb the environment a lot less.” While it’s nice that Spot is nimble and can climb stairs and stuff, tracked vehicles can do that as well, so in this case, the primary driving factor of choosing a robot to work inside Chernobyl is minimizing those contact points.

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker”

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker” able to work in medium level contaminated environments.” As far as more dangerous areas go, there’s a lot of uncertainty about what Spot is actually capable of, according to Megson-Smith. “What you think the problems are, and what the industry thinks the problems are, are subtly different things.

We were thinking that we’d have to make robots incredibly radiation proof to go into these contaminated environments, but they said, “can you just give us a system that we can send into places where humans already can go, but where we just don’t want to send humans.” Making robots incredibly radiation proof is challenging, and without extensive testing and ruggedizing, failures can be frequent, as many robots discovered at Fukushima. Indeed, Megson-Smith that in Fukushima there’s a particular section that’s known as a “robot graveyard” where robots just go to die, and they’ve had to up their standards again and again to keep the robots from failing. “So the thing they’re worried about with Spot is, what is its tolerance? What components will fail, and what can we do to harden it?” he says. “We’re approaching Boston Dynamics at the moment to see if they’ll work with us to address some of those questions.

There’s been a small amount of testing of how robots fair under harsh radiation, Megson-Smith told us, including (relatively recently) a KUKA LBR800 arm, which “stopped operating after a large radiation dose of 164.55(±1.09) Gy to its end effector, and the component causing the failure was an optical encoder.” And in case you’re wondering how much radiation that is, a 1 to 2 Gy dose to the entire body gets you acute radiation sickness and possibly death, while 8 Gy is usually just straight-up death. The goal here is not to kill robots (I mean, it sort of is), but as Megson-Smith says, “if we can work out what the weak points are in a robotic system, can we address those, can we redesign those, or at least understand when they might start to fail?” Now all he has to do is convince Boston Dynamics to send them a Spot that they can zap until it keels over.

The goal for Spot in the short term is fully autonomous radiation mapping, which seems very possible. It’ll also get tested with a wider range of sensor packages, and (happily for the robot) this will all take place safely back at home in the U.K. As far as Chernobyl is concerned, robots will likely have a substantial role to play in the near future. “Ultimately, Chernobyl has to be taken apart and decommissioned. That’s the long-term plan for the facility. To do that, you first need to understand everything, which is where we come in with our sensor systems and robotic platforms,” Megson-Smith tells us. “Since there are entire swathes of the Chernobyl nuclear plant where people can’t go in, we’d need robots like Spot to do those environmental characterizations.” Continue reading

Posted in Human Robots

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots

#437598 Video Friday: Sarcos Is Developing a New ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft unfurled its robotic arm Oct. 20, 2020, and in a first for the agency, briefly touched an asteroid to collect dust and pebbles from the surface for delivery to Earth in 2023.

[ NASA ]

New from David Zarrouk’s lab at BGU is AmphiSTAR, which Zarrouk describes as “a kind of a ground-water drone inspired by the cockroaches (sprawling) and by the Basilisk lizard (running over water). The robot hovers due to the collision of its propellers with the water (hydrodynamics not aerodynamics). The robot can crawl and swim at high and low speeds and smoothly transition between the two. It can reach 3.5 m/s on ground and 1.5m/s in water.”

AmphiSTAR will be presented at IROS, starting next week!

[ BGU ]

This is unfortunately not a great video of a video that was taken at a SoftBank Hawks baseball game in Japan last week, but it’s showing an Atlas robot doing an honestly kind of impressive dance routine to support the team.

ロボット応援団に人型ロボット『ATLAS』がアメリカからリモートで緊急参戦!!!
ホークスビジョンの映像をお楽しみ下さい♪#sbhawks #Pepper #spot pic.twitter.com/6aTYn8GGli
— 福岡ソフトバンクホークス(公式) (@HAWKS_official)
October 16, 2020

Editor’s Note: The tweet embed above is not working for some reason—see the video here.

[ SoftBank Hawks ]

Thanks Thomas!

Sarcos is working on a new robot, which looks to be the torso of their powered exoskeleton with the human relocated somewhere else.

[ Sarcos ]

The biggest holiday of the year, International Sloth Day, was on Tuesday! To celebrate, here’s Slothbot!

[ NSF ]

This is one of those simple-seeming tasks that are really difficult for robots.

I love self-resetting training environments.

[ MIT CSAIL ]

The Chiel lab collaborates with engineers at the Center for Biologically Inspired Robotics Research at Case Western Reserve University to design novel worm-like robots that have potential applications in search-and-rescue missions, endoscopic medicine, or other scenarios requiring navigation through narrow spaces.

[ Case Western ]

ANYbotics partnered with Losinger Marazzi to explore ANYmal’s potential of patrolling construction sites to identify and report safety issues. With such a complex environment, only a robot designed to navigate difficult terrain is able to bring digitalization to such a physically demanding industry.

[ ANYbotics ]

Happy 2018 Halloween from Clearpath Robotics!

[ Clearpath ]

Overcoming illumination variance is a critical factor in vision-based navigation. Existing methods tackled this radical illumination variance issue by proposing camera control or high dynamic range (HDR) image fusion. Despite these efforts, we have found that the vision-based approaches still suffer from overcoming darkness. This paper presents real-time image synthesizing from carefully controlled seed low dynamic range (LDR) image, to enable visual simultaneous localization and mapping (SLAM) in an extremely dark environment (less than 10 lux).

[ KAIST ]

What can MoveIt do? Who knows! Let's find out!

[ MoveIt ]

Thanks Dave!

Here we pick a cube from a starting point, manipulate it within the hand, and then put it back. To explore the capabilities of the hand, no sensors were used in this demonstration. The RBO Hand 3 uses soft pneumatic actuators made of silicone. The softness imparts considerable robustness against variations in object pose and size. This lets us design manipulation funnels that work reliably without needing sensor feedback. We take advantage of this reliability to chain these funnels into more complex multi-step manipulation plans.

[ TU Berlin ]

If this was a real solar array, King Louie would have totally cleaned it. Mostly.

[ BYU ]

Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, were demonstrated to have low efficiency, due to the lack of optimality consideration, conservative motion plans and low decision frequencies. In this paper, we propose FUEL, a hierarchical framework that can support Fast UAV ExpLoration in complex unknown environments.

[ HKUST ]

Countless precise repetitions? This is the perfect task for a robot, thought researchers at the University of Liverpool in the Department of Chemistry, and without further ado they developed an automation solution that can carry out and monitor research tasks, making autonomous decisions about what to do next.

[ Kuka ]

This video shows a demonstration of central results of the SecondHands project. In the context of maintenance and repair tasks, in warehouse environments, the collaborative humanoid robot ARMAR-6 demonstrates a number of cognitive and sensorimotor abilities such as 1) recognition of the need of help based on speech, force, haptics and visual scene and action interpretation, 2) collaborative bimanual manipulation of large objects, 3) compliant mobile manipulation, 4) grasping known and unknown objects and tools, 5) human-robot interaction (object and tool handover) 6) natural dialog and 7) force predictive control.

[ SecondHands ]

In celebration of Ada Lovelace Day, Silicon Valley Robotics hosted a panel of Women in Robotics.

[ Robohub ]

As part of the upcoming virtual IROS conference, HEBI robotics is putting together a tutorial on robotics actuation. While I’m sure HEBI would like you to take a long look at their own actuators, we’ve been assured that no matter what kind of actuators you use, this tutorial will still be informative and useful.

[ YouTube ] via [ HEBI Robotics ]

Thanks Dave!

This week’s UMD Lockheed Martin Robotics Seminar comes from Julie Shah at MIT, on “Enhancing Human Capability with Intelligent Machine Teammates.”

Every team has top performers- people who excel at working in a team to find the right solutions in complex, difficult situations. These top performers include nurses who run hospital floors, emergency response teams, air traffic controllers, and factory line supervisors. While they may outperform the most sophisticated optimization and scheduling algorithms, they cannot often tell us how they do it. Similarly, even when a machine can do the job better than most of us, it can’t explain how. In this talk I share recent work investigating effective ways to blend the unique decision-making strengths of humans and machines. I discuss the development of computational models that enable machines to efficiently infer the mental state of human teammates and thereby collaborate with people in richer, more flexible ways.

[ UMD ]

Matthew Piccoli gives a talk to the UPenn GRASP Lab on “Trading Complexities: Smart Motors and Dumb Vehicles.”

We will discuss my research journey through Penn making the world's smallest, simplest flying vehicles, and in parallel making the most complex brushless motors. What do they have in common? We'll touch on why the quadrotor went from an obscure type of helicopter to the current ubiquitous drone. Finally, we'll get into my life after Penn and what tools I'm creating to further drone and robot designs of the future.

[ UPenn ] Continue reading

Posted in Human Robots

#437592 Coordinated Robotics Wins DARPA SubT ...

DARPA held the Virtual Cave Circuit event of the Subterranean Challenge on Tuesday in the form of a several hour-long livestream. We got to watch (along with all of the competing teams) as virtual robots explored virtual caves fully autonomously, dodging rockfalls, spotting artifacts, scoring points, and sometimes running into stuff and falling over.

Expert commentary was provided by DARPA, and we were able to watch multiple teams running at once, skipping from highlight to highlight. It was really very well done (you can watch an archive of the entire stream here), but they made us wait until the very end to learn who won: First place went to Coordinated Robotics, with BARCS taking second, and third place going to newcomer Team Dynamo.

Huge congratulations to Coordinated Robotics! It’s worth pointing out that the top three teams were separated by an incredibly small handful of points, and on a slightly different day, with slightly different artifact positions, any of them could have come out on top. This doesn’t diminish Coordinated Robotics’ victory in the least—it means that the competition was fierce, and that the problem of autonomous cave exploration with robots has been solved (virtually, at least) in several different but effective ways.

We know Coordinated Robotics pretty well at this point, but here’s an introduction video:

You heard that right—Coordinated Robotics is just Kevin Knoedler, all by himself. This would be astonishing, if we weren’t already familiar with Kevin’s abilities: He won NASA’s virtual Space Robotics Challenge by himself in 2017, and Coordinated Robotics placed first in the DARPA SubT Virtual Tunnel Circuit and second in the Virtual Urban Circuit. We asked Kevin how he managed to do so spectacularly well (again), and here’s what he told us:

IEEE Spectrum: Can you describe what it was like to watch your team of robots on the live stream, and to see them score the most points?

Kevin Knoedler: It was exciting and stressful watching the live stream. It was exciting as the top few scores were quite close for the cave circuit. It was stressful because I started out behind and worked my way up, but did not do well on the final world. Luckily, not doing well on the first and last worlds was offset by better scores on many of the runs in between. DARPA did a very nice job with their live stream of the cave circuit results.

How did you decide on the makeup of your team, and on what sensors to use?

To decide on the makeup of the team I experimented with quite a few different vehicles. I had a lot of trouble with the X2 and other small ground vehicles flipping over. Based on that I looked at the larger ground vehicles that also had a sensor capable of identifying drop-offs. The vehicles that met those criteria for me were the Marble HD2, Marble Husky, Ozbot ATR, and the Absolem. Of those ground vehicles I went with the Marble HD2. It had a downward looking depth camera that I could use to detect drop-offs and was much more stable on the varied terrain than the X2. I had used the X3 aerial vehicle before and so that was my first choice for an aerial platform.

What were some things that you learned in Tunnel and Urban that you were able to incorporate into your strategy for Cave?

In the Tunnel circuit I had learned a strategy to use ground vehicles and in the Urban circuit I had learned a strategy to use aerial vehicles. At a high level that was the biggest thing I learned from the previous circuits that I was able to apply to the Cave circuit. At a lower level I was able to apply many of the development and testing strategies from the previous circuits to the Cave circuit.

What aspect of the cave environment was most challenging for your robots?

I would say it wasn't just one aspect of the cave environment that was challenging for the robots. There were quite a few challenging aspects of the cave environment. For the ground vehicles there were frequently paths that looked good as the robot started on the path, but turned into drop-offs or difficult boulder crawls. While it was fun to see the robot plan well enough to slowly execute paths over the boulders, I was wishing that the robot was smart enough to try a different path rather than wasting so much time crawling over the large boulders. For the aerial vehicles the combination of tight paths along with large vertical spaces was the biggest challenge in the environment. The large open vertical areas were particularly challenging for my aerial robots. They could easily lose track of their position without enough nearby features to track and it was challenging to find the correct path in and out of such large vertical areas.

How will you be preparing for the SubT Final?

To prepare for the SubT Final the vehicles will be getting a lot smarter. The ground vehicles will be better at navigation and communicating with one another. The aerial vehicles will be better able to handle large vertical areas both from a positioning and a planning point of view. Finally, all of the vehicles will do a better job coordinating what areas have been explored and what areas have good leads for further exploration.

Image: DARPA

The final score for the DARPA SubT Cave Circuit virtual competition.

We also had a chance to ask SubT program manager Tim Chung a few questions at yesterday’s post-event press conference, about the course itself and what he thinks teams should have learned from the competition:

IEEE Spectrum: Having looked through some real caves, can you give some examples of some of the most significant differences between this simulation and real caves? And with the enormous variety of caves out there, how generalizable are the solutions that teams came up with?

Tim Chung: Many of the caves that I’ve had to crawl through and gotten bumps and scrapes from had a couple of different features that I’ll highlight. The first is the variations in moisture— a lot of these caves were naturally formed with streams and such, so many of the caves we went to had significant mud, flowing water, and such. And so one of the things we're not capturing in the SubT simulator is explicitly anything that would submerge the robots, or otherwise short any of their systems. So from that perspective, that's one difference that's certainly notable.

And then the other difference I think is the granularity of the terrain, whether it's rubble, sand, or just raw dirt, friction coefficients are all across the board, and I think that's one of the things that any terrestrial simulator will both struggle with and potentially benefit from— that is, terramechanics simulation abilities. Given the emphasis on mobility in the SubT simulation, we’re capturing just a sliver of the complexity of terramechanics, but I think that's probably another take away that you'll certainly see— where there’s that distinction between physical and virtual technologies.

To answer your second question about generalizability— that’s the multi-million dollar question! It’s definitely at the crux of why we have eight diverse worlds, both in size verticality, dimensions, constraint passageways, etc. But this is eight out of countless variations, and the goal of course is to be able to investigate what those key dependencies are. What I'll say is that the out of the seventy three different virtual cave tiles, which are the building blocks that make up these virtual worlds, quite a number of them were not only inspired by real world caves, but were specifically designed so that we can essentially use these tiles as unit tests going forward. So, if I want to simulate vertical inclines, here are the tiles that are the vertical vertical unit tests for robots, and that’s how we’re trying to to think through how to tease out that generalizability factor.

What are some observations from this event that you think systems track teams should pay attention to as they prepare for the final event?

One of the key things about the virtual competition is that you submit your software, and that's it. So you have to design everything from state management to failure mode triage, really thinking about what could go wrong and then building out your autonomous capabilities either to react to some of those conditions, or to anticipate them. And to be honest I think that the humans in the loop that we have in the systems competition really are key enablers of their capability, but also could someday (if not already) be a crutch that we might not be able to develop.

Thinking through some of the failure modes in a fully autonomous software deployed setting are going to be incredibly valuable for the systems competitors, so that for example the human supervisor doesn't have to worry about those failure modes as much, or can respond in a more supervisory way rather than trying to joystick the robot around. I think that's going to be one of the greatest impacts, thinking through what it means to send these robots off to autonomously get you the information you need and complete the mission

This isn’t to say that the humans aren't going to be useful and continue to play a role of course, but I think this shifting of the role of the human supervisor from being a state manager to being more of a tactical commander will dramatically highlight the impact of the virtual side on the systems side.

What, if anything, should we take away from one person teams being able to do so consistently well in the virtual circuit?

It’s a really interesting question. I think part of it has to do with systems integration versus software integration. There's something to be said for the richness of the technologies that can be developed, and how many people it requires to be able to develop some of those technologies. With the systems competitors, having one person try to build, manage, deploy, service, and operate all of those robots is still functionally quite challenging, whereas in the virtual competition, it really is a software deployment more than anything else. And so I think the commonality of single person teams may just be a virtue of the virtual competition not having some of those person-intensive requirements.

In terms of their strong performance, I give credit to all of these really talented folks who are taking upon themselves to jump into the competitor pool and see how well they do, and I think that just goes to show you that whether you're one person or ten people people or a hundred people on a team, a good idea translated and executed well really goes a long way.

Looking ahead, teams have a year to prepare for the final event, which is still scheduled to be held sometime in fall 2021. And even though there was no cave event for systems track teams, the fact that the final event will be a combination of tunnel, urban, and cave circuits means that systems track teams have been figuring out how to get their robots to work in caves anyway, and we’ll be bringing you some of their stories over the next few weeks.

[ DARPA SubT ] Continue reading

Posted in Human Robots