Tag Archives: Space

#434270 AI Will Create Millions More Jobs Than ...

In the past few years, artificial intelligence has advanced so quickly that it now seems hardly a month goes by without a newsworthy AI breakthrough. In areas as wide-ranging as speech translation, medical diagnosis, and gameplay, we have seen computers outperform humans in startling ways.

This has sparked a discussion about how AI will impact employment. Some fear that as AI improves, it will supplant workers, creating an ever-growing pool of unemployable humans who cannot compete economically with machines.

This concern, while understandable, is unfounded. In fact, AI will be the greatest job engine the world has ever seen.

New Technology Isn’t a New Phenomenon
On the one hand, those who predict massive job loss from AI can be excused. It is easier to see existing jobs disrupted by new technology than to envision what new jobs the technology will enable.

But on the other hand, radical technological advances aren’t a new phenomenon. Technology has progressed nonstop for 250 years, and in the US unemployment has stayed between 5 to 10 percent for almost all that time, even when radical new technologies like steam power and electricity came on the scene.

But you don’t have to look back to steam, or even electricity. Just look at the internet. Go back 25 years, well within the memory of today’s pessimistic prognosticators, to 1993. The web browser Mosaic had just been released, and the phrase “surfing the web,” that most mixed of metaphors, was just a few months old.

If someone had asked you what would be the result of connecting a couple billion computers into a giant network with common protocols, you might have predicted that email would cause us to mail fewer letters, and the web might cause us to read fewer newspapers and perhaps even do our shopping online. If you were particularly farsighted, you might have speculated that travel agents and stockbrokers would be adversely affected by this technology. And based on those surmises, you might have thought the internet would destroy jobs.

But now we know what really happened. The obvious changes did occur. But a slew of unexpected changes happened as well. We got thousands of new companies worth trillions of dollars. We bettered the lot of virtually everyone on the planet touched by the technology. Dozens of new careers emerged, from web designer to data scientist to online marketer. The cost of starting a business with worldwide reach plummeted, and the cost of communicating with customers and leads went to nearly zero. Vast storehouses of information were made freely available and used by entrepreneurs around the globe to build new kinds of businesses.

But yes, we mail fewer letters and buy fewer newspapers.

The Rise of Artificial Intelligence
Then along came a new, even bigger technology: artificial intelligence. You hear the same refrain: “It will destroy jobs.”

Consider the ATM. If you had to point to a technology that looked as though it would replace people, the ATM might look like a good bet; it is, after all, an automated teller machine. And yet, there are more tellers now than when ATMs were widely released. How can this be? Simple: ATMs lowered the cost of opening bank branches, and banks responded by opening more, which required hiring more tellers.

In this manner, AI will create millions of jobs that are far beyond our ability to imagine. For instance, AI is becoming adept at language translation—and according to the US Bureau of Labor Statistics, demand for human translators is skyrocketing. Why? If the cost of basic translation drops to nearly zero, the cost of doing business with those who speak other languages falls. Thus, it emboldens companies to do more business overseas, creating more work for human translators. AI may do the simple translations, but humans are needed for the nuanced kind.

In fact, the BLS forecasts faster-than-average job growth in many occupations that AI is expected to impact: accountants, forensic scientists, geological technicians, technical writers, MRI operators, dietitians, financial specialists, web developers, loan officers, medical secretaries, and customer service representatives, to name a very few. These fields will not experience job growth in spite of AI, but through it.

But just as with the internet, the real gains in jobs will come from places where our imaginations cannot yet take us.

Parsing Pessimism
You may recall waking up one morning to the news that “47 percent of jobs will be lost to technology.”

That report by Carl Frey and Michael Osborne is a fine piece of work, but readers and the media distorted their 47 percent number. What the authors actually said is that some functions within 47 percent of jobs will be automated, not that 47 percent of jobs will disappear.

Frey and Osborne go on to rank occupations by “probability of computerization” and give the following jobs a 65 percent or higher probability: social science research assistants, atmospheric and space scientists, and pharmacy aides. So what does this mean? Social science professors will no longer have research assistants? Of course they will. They will just do different things because much of what they do today will be automated.

The intergovernmental Organization for Economic Co-operation and Development released a report of their own in 2016. This report, titled “The Risk of Automation for Jobs in OECD Countries,” applies a different “whole occupations” methodology and puts the share of jobs potentially lost to computerization at nine percent. That is normal churn for the economy.

But what of the skills gap? Will AI eliminate low-skilled workers and create high-skilled job opportunities? The relevant question is whether most people can do a job that’s just a little more complicated than the one they currently have. This is exactly what happened with the industrial revolution; farmers became factory workers, factory workers became factory managers, and so on.

Embracing AI in the Workplace
A January 2018 Accenture report titled “Reworking the Revolution” estimates that new applications of AI combined with human collaboration could boost employment worldwide as much as 10 percent by 2020.

Electricity changed the world, as did mechanical power, as did the assembly line. No one can reasonably claim that we would be better off without those technologies. Each of them bettered our lives, created jobs, and raised wages. AI will be bigger than electricity, bigger than mechanization, bigger than anything that has come before it.

This is how free economies work, and why we have never run out of jobs due to automation. There are not a fixed number of jobs that automation steals one by one, resulting in progressively more unemployment. There are as many jobs in the world as there are buyers and sellers of labor.

Image Credit: enzozo / Shutterstock.com Continue reading

Posted in Human Robots

#434260 The Most Surprising Tech Breakthroughs ...

Development across the entire information technology landscape certainly didn’t slow down this year. From CRISPR babies, to the rapid decline of the crypto markets, to a new robot on Mars, and discovery of subatomic particles that could change modern physics as we know it, there was no shortage of headline-grabbing breakthroughs and discoveries.

As 2018 comes to a close, we can pause and reflect on some of the biggest technology breakthroughs and scientific discoveries that occurred this year.

I reached out to a few Singularity University speakers and faculty across the various technology domains we cover asking what they thought the biggest breakthrough was in their area of expertise. The question posed was:

“What, in your opinion, was the biggest development in your area of focus this year? Or, what was the breakthrough you were most surprised by in 2018?”

I can share that for me, hands down, the most surprising development I came across in 2018 was learning that a publicly-traded company that was briefly valued at over $1 billion, and has over 12,000 employees and contractors spread around the world, has no physical office space and the entire business is run and operated from inside an online virtual world. This is Ready Player One stuff happening now.

For the rest, here’s what our experts had to say.

DIGITAL BIOLOGY
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

“That’s easy: CRISPR babies. I knew it was technically possible, and I’ve spent two years predicting it would happen first in China. I knew it was just a matter of time but I failed to predict the lack of oversight, the dubious consent process, the paucity of publicly-available data, and the targeting of a disease that we already know how to prevent and treat and that the children were at low risk of anyway.

I’m not convinced that this counts as a technical breakthrough, since one of the girls probably isn’t immune to HIV, but it sure was a surprise.”

For more, read Dr. Vora’s summary of this recent stunning news from China regarding CRISPR-editing human embryos.

QUANTUM COMPUTING
Andrew Fursman | Co-Founder/CEO 1Qbit, Faculty, Quantum Computing, Singularity University

“There were two last-minute holiday season surprise quantum computing funding and technology breakthroughs:

First, right before the government shutdown, one priority legislative accomplishment will provide $1.2 billion in quantum computing research over the next five years. Second, there’s the rise of ions as a truly viable, scalable quantum computing architecture.”

*Read this Gizmodo profile on an exciting startup in the space to learn more about this type of quantum computing

ENERGY
Ramez Naam | Chair, Energy and Environmental Systems, Singularity University

“2018 had plenty of energy surprises. In solar, we saw unsubsidized prices in the sunny parts of the world at just over two cents per kwh, or less than half the price of new coal or gas electricity. In the US southwest and Texas, new solar is also now cheaper than new coal or gas. But even more shockingly, in Germany, which is one of the least sunny countries on earth (it gets less sunlight than Canada) the average bid for new solar in a 2018 auction was less than 5 US cents per kwh. That’s as cheap as new natural gas in the US, and far cheaper than coal, gas, or any other new electricity source in most of Europe.

In fact, it’s now cheaper in some parts of the world to build new solar or wind than to run existing coal plants. Think tank Carbon Tracker calculates that, over the next 10 years, it will become cheaper to build new wind or solar than to operate coal power in most of the world, including specifically the US, most of Europe, and—most importantly—India and the world’s dominant burner of coal, China.

Here comes the sun.”

GLOBAL GRAND CHALLENGES
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

“In 2018 we saw a lot of areas in the Global Grand Challenges move forward—advancements in robotic farming technology and cultured meat, low-cost 3D printed housing, more sophisticated types of online education expanding to every corner of the world, and governments creating new policies to deal with the ethics of the digital world. These were the areas we were watching and had predicted there would be change.

What most surprised me was to see young people, especially teenagers, start to harness technology in powerful ways and use it as a platform to make their voices heard and drive meaningful change in the world. In 2018 we saw teenagers speak out on a number of issues related to their well-being and launch digital movements around issues such as gun and school safety, global warming and environmental issues. We often talk about the harm technology can cause to young people, but on the flip side, it can be a very powerful tool for youth to start changing the world today and something I hope we see more of in the future.”

BUSINESS STRATEGY
Pascal Finette | Chair, Entrepreneurship and Open Innovation, Singularity University

“Without a doubt the rapid and massive adoption of AI, specifically deep learning, across industries, sectors, and organizations. What was a curiosity for most companies at the beginning of the year has quickly made its way into the boardroom and leadership meetings, and all the way down into the innovation and IT department’s agenda. You are hard-pressed to find a mid- to large-sized company today that is not experimenting or implementing AI in various aspects of its business.

On the slightly snarkier side of answering this question: The very rapid decline in interest in blockchain (and cryptocurrencies). The blockchain party was short, ferocious, and ended earlier than most would have anticipated, with a huge hangover for some. The good news—with the hot air dissipated, we can now focus on exploring the unique use cases where blockchain does indeed offer real advantages over centralized approaches.”

*Author note: snark is welcome and appreciated

ROBOTICS
Hod Lipson | Director, Creative Machines Lab, Columbia University

“The biggest surprise for me this year in robotics was learning dexterity. For decades, roboticists have been trying to understand and imitate dexterous manipulation. We humans seem to be able to manipulate objects with our fingers with incredible ease—imagine sifting through a bunch of keys in the dark, or tossing and catching a cube. And while there has been much progress in machine perception, dexterous manipulation remained elusive.

There seemed to be something almost magical in how we humans can physically manipulate the physical world around us. Decades of research in grasping and manipulation, and millions of dollars spent on robot-hand hardware development, has brought us little progress. But in late 2018, the Berkley OpenAI group demonstrated that this hurdle may finally succumb to machine learning as well. Given 200 years worth of practice, machines learned to manipulate a physical object with amazing fluidity. This might be the beginning of a new age for dexterous robotics.”

MACHINE LEARNING
Jeremy Howard | Founding Researcher, fast.ai, Founder/CEO, Enlitic, Faculty Data Science, Singularity University

“The biggest development in machine learning this year has been the development of effective natural language processing (NLP).

The New York Times published an article last month titled “Finally, a Machine That Can Finish Your Sentence,” which argued that NLP neural networks have reached a significant milestone in capability and speed of development. The “finishing your sentence” capability mentioned in the title refers to a type of neural network called a “language model,” which is literally a model that learns how to finish your sentences.

Earlier this year, two systems (one, called ELMO, is from the Allen Institute for AI, and the other, called ULMFiT, was developed by me and Sebastian Ruder) showed that such a model could be fine-tuned to dramatically improve the state-of-the-art in nearly every NLP task that researchers study. This work was further developed by OpenAI, which in turn was greatly scaled up by Google Brain, who created a system called BERT which reached human-level performance on some of NLP’s toughest challenges.

Over the next year, expect to see fine-tuned language models used for everything from understanding medical texts to building disruptive social media troll armies.”

DIGITAL MANUFACTURING
Andre Wegner | Founder/CEO Authentise, Chair, Digital Manufacturing, Singularity University

“Most surprising to me was the extent and speed at which the industry finally opened up.

While previously, only few 3D printing suppliers had APIs and knew what to do with them, 2018 saw nearly every OEM (or original equipment manufacturer) enabling data access and, even more surprisingly, shying away from proprietary standards and adopting MTConnect, as stalwarts such as 3D Systems and Stratasys have been. This means that in two to three years, data access to machines will be easy, commonplace, and free. The value will be in what is being done with that data.

Another example of this openness are the seemingly endless announcements of integrated workflows: GE’s announcement with most major software players to enable integrated solutions, EOS’s announcement with Siemens, and many more. It’s clear that all actors in the additive ecosystem have taken a step forward in terms of openness. The result is a faster pace of innovation, particularly in the software and data domains that are crucial to enabling comprehensive digital workflow to drive agile and resilient manufacturing.

I’m more optimistic we’ll achieve that now than I was at the end of 2017.”

SCIENCE AND DISCOVERY
Paul Saffo | Chair, Future Studies, Singularity University, Distinguished Visiting Scholar, Stanford Media-X Research Network

“The most important development in technology this year isn’t a technology, but rather the astonishing science surprises made possible by recent technology innovations. My short list includes the discovery of the “neptmoon”, a Neptune-scale moon circling a Jupiter-scale planet 8,000 lightyears from us; the successful deployment of the Mars InSight Lander a month ago; and the tantalizing ANITA detection (what could be a new subatomic particle which would in turn blow the standard model wide open). The highest use of invention is to support science discovery, because those discoveries in turn lead us to the future innovations that will improve the state of the world—and fire up our imaginations.”

ROBOTICS
Pablos Holman | Inventor, Hacker, Faculty, Singularity University

“Just five or ten years ago, if you’d asked any of us technologists “What is harder for robots? Eyes, or fingers?” We’d have all said eyes. Robots have extraordinary eyes now, but even in a surgical robot, the fingers are numb and don’t feel anything. Stanford robotics researchers have invented fingertips that can feel, and this will be a kingpin that allows robots to go everywhere they haven’t been yet.”

BLOCKCHAIN
Nathana Sharma | Blockchain, Policy, Law, and Ethics, Faculty, Singularity University

“2017 was the year of peak blockchain hype. 2018 has been a year of resetting expectations and technological development, even as the broader cryptocurrency markets have faced a winter. It’s now about seeing adoption and applications that people want and need to use rise. An incredible piece of news from December 2018 is that Facebook is developing a cryptocurrency for users to make payments through Whatsapp. That’s surprisingly fast mainstream adoption of this new technology, and indicates how powerful it is.”

ARTIFICIAL INTELLIGENCE
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

“I think one of the most visible improvements in AI was illustrated by the Boston Dynamics Parkour video. This was not due to an improvement in brushless motors, accelerometers, or gears. It was due to improvements in AI algorithms and training data. To be fair, the video released was cherry-picked from numerous attempts, many of which ended with a crash. However, the fact that it could be accomplished at all in 2018 was a real win for both AI and robotics.”

NEUROSCIENCE
Divya Chander | Chair, Neuroscience, Singularity University

“2018 ushered in a new era of exponential trends in non-invasive brain modulation. Changing behavior or restoring function takes on a new meaning when invasive interfaces are no longer needed to manipulate neural circuitry. The end of 2018 saw two amazing announcements: the ability to grow neural organoids (mini-brains) in a dish from neural stem cells that started expressing electrical activity, mimicking the brain function of premature babies, and the first (known) application of CRISPR to genetically alter two fetuses grown through IVF. Although this was ostensibly to provide genetic resilience against HIV infections, imagine what would happen if we started tinkering with neural circuitry and intelligence.”

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#434246 How AR and VR Will Shape the Future of ...

How we work and play is about to transform.

After a prolonged technology “winter”—or what I like to call the ‘deceptive growth’ phase of any exponential technology—the hardware and software that power virtual (VR) and augmented reality (AR) applications are accelerating at an extraordinary rate.

Unprecedented new applications in almost every industry are exploding onto the scene.

Both VR and AR, combined with artificial intelligence, will significantly disrupt the “middleman” and make our lives “auto-magical.” The implications will touch every aspect of our lives, from education and real estate to healthcare and manufacturing.

The Future of Work
How and where we work is already changing, thanks to exponential technologies like artificial intelligence and robotics.

But virtual and augmented reality are taking the future workplace to an entirely new level.

Virtual Reality Case Study: eXp Realty

I recently interviewed Glenn Sanford, who founded eXp Realty in 2008 (imagine: a real estate company on the heels of the housing market collapse) and is the CEO of eXp World Holdings.

Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, three Canadian provinces, and 400 MLS market areas… all without a single traditional staffed office.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.

Real estate agents, managers, and even clients gather in a unique virtual campus, replete with a sports field, library, and lobby. It’s all accessible via head-mounted displays, but most agents join with a computer browser. Surprisingly, the campus-style setup enables the same type of water-cooler conversations I see every day at the XPRIZE headquarters.

With this centralized VR campus, eXp Realty has essentially thrown out overhead costs and entered a lucrative market without the same constraints of brick-and-mortar businesses.

Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

As a leader, what happens when you can scalably expand and connect your workforce, not to mention your customer base, without the excess overhead of office space and furniture? Your organization can run faster and farther than your competition.

But beyond the indefinite scalability achieved through digitizing your workplace, VR’s implications extend to the lives of your employees and even the future of urban planning:

Home Prices: As virtual headquarters and office branches take hold of the 21st-century workplace, those who work on campuses like eXp Realty’s won’t need to commute to work. As a result, VR has the potential to dramatically influence real estate prices—after all, if you don’t need to drive to an office, your home search isn’t limited to a specific set of neighborhoods anymore.

Transportation: In major cities like Los Angeles and San Francisco, the implications are tremendous. Analysts have revealed that it’s already cheaper to use ride-sharing services like Uber and Lyft than to own a car in many major cities. And once autonomous “Car-as-a-Service” platforms proliferate, associated transportation costs like parking fees, fuel, and auto repairs will no longer fall on the individual, if not entirely disappear.

Augmented Reality: Annotate and Interact with Your Workplace

As I discussed in a recent Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high-rises.

Enter a professional world electrified by augmented reality.

Our workplaces are practically littered with information. File cabinets abound with archival data and relevant documents, and company databases continue to grow at a breakneck pace. And, as all of us are increasingly aware, cybersecurity and robust data permission systems remain a major concern for CEOs and national security officials alike.

What if we could link that information to specific locations, people, time frames, and even moving objects?

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imagine showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Or better yet, imagine precise and high-dexterity work environments populated with interactive annotations that guide an artisan, surgeon, or engineer through meticulous handiwork.

Take, for instance, AR service 3D4Medical, which annotates virtual anatomy in midair. And as augmented reality hardware continues to advance, we might envision a future wherein surgeons perform operations on annotated organs and magnified incision sites, or one in which quantum computer engineers can magnify and annotate mechanical parts, speeding up reaction times and vastly improving precision.

The Future of Free Time and Play
In Abundance, I wrote about today’s rapidly demonetizing cost of living. In 2011, almost 75 percent of the average American’s income was spent on housing, transportation, food, personal insurance, health, and entertainment. What the headlines don’t mention: this is a dramatic improvement over the last 50 years. We’re spending less on basic necessities and working fewer hours than previous generations.

Chart depicts the average weekly work hours for full-time production employees in non-agricultural activities. Source: Diamandis.com data
Technology continues to change this, continues to take care of us and do our work for us. One phrase that describes this is “technological socialism,” where it’s technology, not the government, that takes care of us.

Extrapolating from the data, I believe we are heading towards a post-scarcity economy. Perhaps we won’t need to work at all, because we’ll own and operate our own fleet of robots or AI systems that do our work for us.

As living expenses demonetize and workplace automation increases, what will we do with this abundance of time? How will our children and grandchildren connect and find their purpose if they don’t have to work for a living?

As I write this on a Saturday afternoon and watch my two seven-year-old boys immersed in Minecraft, building and exploring worlds of their own creation, I can’t help but imagine that this future is about to enter its disruptive phase.

Exponential technologies are enabling a new wave of highly immersive games, virtual worlds, and online communities. We’ve likely all heard of the Oasis from Ready Player One. But far beyond what we know today as ‘gaming,’ VR is fast becoming a home to immersive storytelling, interactive films, and virtual world creation.

Within the virtual world space, let’s take one of today’s greatest precursors, the aforementioned game Minecraft.

For reference, Minecraft is over eight times the size of planet Earth. And in their free time, my kids would rather build in Minecraft than almost any other activity. I think of it as their primary passion: to create worlds, explore worlds, and be challenged in worlds.

And in the near future, we’re all going to become creators of or participants in virtual worlds, each populated with assets and storylines interoperable with other virtual environments.

But while the technological methods are new, this concept has been alive and well for generations. Whether you got lost in the world of Heidi or Harry Potter, grew up reading comic books or watching television, we’ve all been playing in imaginary worlds, with characters and story arcs populating our minds. That’s the nature of childhood.

In the past, however, your ability to edit was limited, especially if a given story came in some form of 2D media. I couldn’t edit where Tom Sawyer was going or change what Iron Man was doing. But as a slew of new software advancements underlying VR and AR allow us to interact with characters and gain (albeit limited) agency (for now), both new and legacy stories will become subjects of our creation and playgrounds for virtual interaction.

Take VR/AR storytelling startup Fable Studio’s Wolves in the Walls film. Debuting at the 2018 Sundance Film Festival, Fable’s immersive story is adapted from Neil Gaiman’s book and tracks the protagonist, Lucy, whose programming allows her to respond differently based on what her viewers do.

And while Lucy can merely hand virtual cameras to her viewers among other limited tasks, Fable Studio’s founder Edward Saatchi sees this project as just the beginning.

Imagine a virtual character—either in augmented or virtual reality—geared with AI capabilities, that now can not only participate in a fictional storyline but interact and dialogue directly with you in a host of virtual and digitally overlayed environments.

Or imagine engaging with a less-structured environment, like the Star Wars cantina, populated with strangers and friends to provide an entirely novel social media experience.

Already, we’ve seen characters like that of Pokémon brought into the real world with Pokémon Go, populating cities and real spaces with holograms and tasks. And just as augmented reality has the power to turn our physical environments into digital gaming platforms, advanced AR could bring on a new era of in-home entertainment.

Imagine transforming your home into a narrative environment for your kids or overlaying your office interior design with Picasso paintings and gothic architecture. As computer vision rapidly grows capable of identifying objects and mapping virtual overlays atop them, we might also one day be able to project home theaters or live sports within our homes, broadcasting full holograms that allow us to zoom into the action and place ourselves within it.

Increasingly honed and commercialized, augmented and virtual reality are on the cusp of revolutionizing the way we play, tell stories, create worlds, and interact with both fictional characters and each other.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: nmedia / Shutterstock.com Continue reading

Posted in Human Robots

#434235 The Milestones of Human Progress We ...

When you look back at 2018, do you see a good or a bad year? Chances are, your perception of the year involves fixating on all the global and personal challenges it brought. In fact, every year, we tend to look back at the previous year as “one of the most difficult” and hope that the following year is more exciting and fruitful.

But in the grander context of human history, 2018 was an extraordinarily positive year. In fact, every year has been getting progressively better.

Before we dive into some of the highlights of human progress from 2018, let’s make one thing clear. There is no doubt that there are many overwhelming global challenges facing our species. From climate change to growing wealth inequality, we are far from living in a utopia.

Yet it’s important to recognize that both our news outlets and audiences have been disproportionately fixated on negative news. This emphasis on bad news is detrimental to our sense of empowerment as a species.

So let’s take a break from all the disproportionate negativity and have a look back on how humanity pushed boundaries in 2018.

On Track to Becoming an Interplanetary Species
We often forget how far we’ve come since the very first humans left the African savanna, populated the entire planet, and developed powerful technological capabilities. Our desire to explore the unknown has shaped the course of human evolution and will continue to do so.

This year, we continued to push the boundaries of space exploration. As depicted in the enchanting short film Wanderers, humanity’s destiny is the stars. We are born to be wanderers of the cosmos and the everlasting unknown.

SpaceX had 21 successful launches in 2018 and closed the year with a successful GPS launch. The latest test flight by Virgin Galactic was also an incredible milestone, as SpaceShipTwo was welcomed into space. Richard Branson and his team expect that space tourism will be a reality within the next 18 months.

Our understanding of the cosmos is also moving forward with continuous breakthroughs in astrophysics and astronomy. One notable example is the MARS InSight Mission, which uses cutting-edge instruments to study Mars’ interior structure and has even given us the first recordings of sound on Mars.

Understanding and Tackling Disease
Thanks to advancements in science and medicine, we are currently living longer, healthier, and wealthier lives than at any other point in human history. In fact, for most of human history, life expectancy at birth was around 30. Today it is more than 70 worldwide, and in the developed parts of the world, more than 80.

Brilliant researchers around the world are pushing for even better health outcomes. This year, we saw promising treatments emerge against Alzheimers disease, rheumatoid arthritis, multiple scleroris, and even the flu.

The deadliest disease of them all, cancer, is also being tackled. According to the American Association of Cancer Research, 22 revolutionary treatments for cancer were approved in the last year, and the death rate in adults is also in decline. Advancements in immunotherapy, genetic engineering, stem cells, and nanotechnology are all powerful resources to tackle killer diseases.

Breakthrough Mental Health Therapy
While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. According to the World Economic Forum, mental health disorders affect one in four people globally, and in many places they are significantly under-reported. More people are beginning to realize that our mental health is just as important as our physical health, and that we ought to take care of our minds just as much as our bodies.

We are seeing the rise of applications that put mental well-being at their center. Breakthrough advancements in genetics are allowing us to better understand the genetic makeup of disorders like clinical depression or Schizophrenia, and paving the way for personalized medical treatment. We are also seeing the rise of increasingly effective therapeutic treatments for anxiety.

This year saw many milestones for a whole new revolutionary area in mental health: psychedelic therapy. Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment for depression and anxiety.

Moral and Social Progress
Innovation is often associated with economic and technological progress. However, we also need leaps of progress in our morality, values, and policies. Throughout the 21st century, we’ve made massive strides in rights for women and children, civil rights, LGBT rights, animal rights, and beyond. However, with rising nationalism and xenophobia in many parts of the developed world, there is significant work to be done on this front.

All hope is not lost, as we saw many noteworthy milestones this year. In January 2018, Iceland introduced the equal wage law, bringing an end to the gender wage gap. On September 6th, the Indian Supreme Court decriminalized homosexuality, marking a historical moment. Earlier in December, the European Commission released a draft of ethics guidelines for trustworthy artificial intelligence. Such are just a few examples of positive progress in social justice, ethics, and policy.

We are also seeing a global rise in social impact entrepreneurship. Emerging startups are no longer valued simply based on their profits and revenue, but also on the level of positive impact they are having on the world at large. The world’s leading innovators are not asking themselves “How can I become rich?” but rather “How can I solve this global challenge?”

Intelligently Optimistic for 2019
It’s becoming more and more clear that we are living in the most exciting time in human history. Even more, we mustn’t be afraid to be optimistic about 2019.

An optimistic mindset can be grounded in rationality and evidence. Intelligent optimism is all about being excited about the future in an informed and rational way. The mindset is critical if we are to get everyone excited about the future by highlighting the rapid progress we have made and recognizing the tremendous potential humans have to find solutions to our problems.

In his latest TED talk, Steven Pinker points out, “Progress does not mean that everything becomes better for everyone everywhere all the time. That would be a miracle, and progress is not a miracle but problem-solving. Problems are inevitable and solutions create new problems which have to be solved in their turn.”

Let us not forget that in cosmic time scales, our entire species’ lifetime, including all of human history, is the equivalent of the blink of an eye. The probability of us existing both as an intelligent species and as individuals is so astoundingly low that it’s practically non-existent. We are the products of 14 billion years of cosmic evolution and extraordinarily good fortune. Let’s recognize and leverage this wondrous opportunity, and pave an exciting way forward.

Image Credit: Virgin Galactic / Virgin Galactic 2018. Continue reading

Posted in Human Robots

#434151 Life-or-Death Algorithms: The Black Box ...

When it comes to applications for machine learning, few can be more widely hyped than medicine. This is hardly surprising: it’s a huge industry that generates a phenomenal amount of data and revenue, where technological advances can improve or save the lives of millions of people. Hardly a week passes without a study that suggests algorithms will soon be better than experts at detecting pneumonia, or Alzheimer’s—diseases in complex organs ranging from the eye to the heart.

The problems of overcrowded hospitals and overworked medical staff plague public healthcare systems like Britain’s NHS and lead to rising costs for private healthcare systems. Here, again, algorithms offer a tantalizing solution. How many of those doctor’s visits really need to happen? How many could be replaced by an interaction with an intelligent chatbot—especially if it can be combined with portable diagnostic tests, utilizing the latest in biotechnology? That way, unnecessary visits could be reduced, and patients could be diagnosed and referred to specialists more quickly without waiting for an initial consultation.

As ever with artificial intelligence algorithms, the aim is not to replace doctors, but to give them tools to reduce the mundane or repetitive parts of the job. With an AI that can examine thousands of scans in a minute, the “dull drudgery” is left to machines, and the doctors are freed to concentrate on the parts of the job that require more complex, subtle, experience-based judgement of the best treatments and the needs of the patient.

High Stakes
But, as ever with AI algorithms, there are risks involved with relying on them—even for tasks that are considered mundane. The problems of black-box algorithms that make inexplicable decisions are bad enough when you’re trying to understand why that automated hiring chatbot was unimpressed by your job interview performance. In a healthcare context, where the decisions made could mean life or death, the consequences of algorithmic failure could be grave.

A new paper in Science Translational Medicine, by Nicholson Price, explores some of the promises and pitfalls of using these algorithms in the data-rich medical environment.

Neural networks excel at churning through vast quantities of training data and making connections, absorbing the underlying patterns or logic for the system in hidden layers of linear algebra; whether it’s detecting skin cancer from photographs or learning to write in pseudo-Shakespearean script. They are terrible, however, at explaining the underlying logic behind the relationships that they’ve found: there is often little more than a string of numbers, the statistical “weights” between the layers. They struggle to distinguish between correlation and causation.

This raises interesting dilemmas for healthcare providers. The dream of big data in medicine is to feed a neural network on “huge troves of health data, finding complex, implicit relationships and making individualized assessments for patients.” What if, inevitably, such an algorithm proves to be unreasonably effective at diagnosing a medical condition or prescribing a treatment, but you have no scientific understanding of how this link actually works?

Too Many Threads to Unravel?
The statistical models that underlie such neural networks often assume that variables are independent of each other, but in a complex, interacting system like the human body, this is not always the case.

In some ways, this is a familiar concept in medical science—there are many phenomena and links which have been observed for decades but are still poorly understood on a biological level. Paracetamol is one of the most commonly-prescribed painkillers, but there’s still robust debate about how it actually works. Medical practitioners may be keen to deploy whatever tool is most effective, regardless of whether it’s based on a deeper scientific understanding. Fans of the Copenhagen interpretation of quantum mechanics might spin this as “Shut up and medicate!”

But as in that field, there’s a debate to be had about whether this approach risks losing sight of a deeper understanding that will ultimately prove more fruitful—for example, for drug discovery.

Away from the philosophical weeds, there are more practical problems: if you don’t understand how a black-box medical algorithm is operating, how should you approach the issues of clinical trials and regulation?

Price points out that, in the US, the “21st-Century Cures Act” allows the FDA to regulate any algorithm that analyzes images, or doesn’t allow a provider to review the basis for its conclusions: this could completely exclude “black-box” algorithms of the kind described above from use.

Transparency about how the algorithm functions—the data it looks at, and the thresholds for drawing conclusions or providing medical advice—may be required, but could also conflict with the profit motive and the desire for secrecy in healthcare startups.

One solution might be to screen algorithms that can’t explain themselves, or don’t rely on well-understood medical science, from use before they enter the healthcare market. But this could prevent people from reaping the benefits that they can provide.

Evaluating Algorithms
New healthcare algorithms will be unable to do what physicists did with quantum mechanics, and point to a track record of success, because they will not have been deployed in the field. And, as Price notes, many algorithms will improve as they’re deployed in the field for a greater amount of time, and can harvest and learn from the performance data that’s actually used. So how can we choose between the most promising approaches?

Creating a standardized clinical trial and validation system that’s equally valid across algorithms that function in different ways, or use different input or training data, will be a difficult task. Clinical trials that rely on small sample sizes, such as for algorithms that attempt to personalize treatment to individuals, will also prove difficult. With a small sample size and little scientific understanding, it’s hard to tell whether the algorithm succeeded or failed because it’s bad at its job or by chance.

Add learning into the mix and the picture gets more complex. “Perhaps more importantly, to the extent that an ideal black-box algorithm is plastic and frequently updated, the clinical trial validation model breaks down further, because the model depends on a static product subject to stable validation.” As Price describes, the current system for testing and validation of medical products needs some adaptation to deal with this new software before it can successfully test and validate the new algorithms.

Striking a Balance
The story in healthcare reflects the AI story in so many other fields, and the complexities involved perhaps illustrate why even an illustrious company like IBM appears to be struggling to turn its famed Watson AI into a viable product in the healthcare space.

A balance must be struck, both in our rush to exploit big data and the eerie power of neural networks, and to automate thinking. We must be aware of the biases and flaws of this approach to problem-solving: to realize that it is not a foolproof panacea.

But we also need to embrace these technologies where they can be a useful complement to the skills, insights, and deeper understanding that humans can provide. Much like a neural network, our industries need to train themselves to enhance this cooperation in the future.

Image Credit: Connect world / Shutterstock.com Continue reading

Posted in Human Robots