Tag Archives: source

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#435818 Swappable Flying Batteries Keep Drones ...

Battery power is a limiting factor for robots everywhere, but it’s particularly problematic for drones, which have to make an awkward tradeoff between the amount of battery they carry, the amount of other more useful stuff they carry, and how long they can spend in the air. Consumer drones seem to have settled around about a third of their overall mass in battery, resulting in flight times of 20 to 25 minutes at best, before you have to bring the drone back for a battery swap. And if whatever the drone was supposed to be doing depended on it staying in the air, then you’re pretty much out of luck.

When much larger aircraft have this problem, and in particular military aircraft which sometimes need to stay on-station for long periods of time, the solution is mid-air refueling—why send an aircraft all the way back to its fuel source when you can instead bring the fuel source to the aircraft? It’s easier to do this with liquid fuel than it is with batteries, of course, but researchers at UC Berkeley have come up with a clever solution: You just give the batteries wings. Or, in this case, rotors.

The big quadrotor, which weighs 820 grams, is carrying its own 2.2 Ah lithium-polymer battery that by itself gives it a flight time of about 12 minutes. Each little quadrotor weighs 320 g, including its own 0.8 Ah battery plus a 1.5 Ah battery as cargo. The little ones can’t keep themselves aloft for all that long, but that’s okay, because as flying batteries their only job is to go from ground to the big quadrotor and back again.

Photo: UC Berkeley

The flying batteries land on a tray mounted atop the main drone and align their legs with electrical contacts.

How the flying batteries work
As each flying battery approaches the main quadrotor, the smaller quadrotor takes a position about 30 centimeter above a passive docking tray mounted on top of the bigger drone. It then slowly descends to about 3 cm above, waits for its alignment to be just right, and then drops, landing on the tray which helps align its legs with electrical contacts. As soon as a connection is made, the main quadrotor is able to power itself completely from the smaller drone’s battery payload. Each flying battery can power the main quadrotor for about 6 minutes, and then it flies off and a new flying battery takes its place. If everything goes well, the main quadrotor only uses its primary battery during the undocking and docking phases, and in testing, this boosted its flight time from 12 minutes to nearly an hour.

All of this happens in a motion-capture environment, which is a big constraint, and getting this precision(ish) docking maneuver to work outside, or when the primary drone is moving, is something that the researchers would like to figure out. There are potential applications in situations where continuous monitoring by a drone is important—you could argue that switching off two identical drones might be a simpler way of achieving that, but it also requires two (presumably fancy) drones as opposed to just one plus a bunch of relatively simple and inexpensive flying batteries.

“Flying Batteries: In-flight Battery Switching to Increase Multirotor Flight Time,” by Karan P. Jain and Mark W. Mueller from the High Performance Robotics Lab at UC Berkeley, is available on arXiv. Continue reading

Posted in Human Robots

#435757 Robotic Animal Agility

An off-shore wind power platform, somewhere in the North Sea, on a freezing cold night, with howling winds and waves crashing against the impressive structure. An imperturbable ANYmal is quietly conducting its inspection.

ANYmal, a medium sized dog-like quadruped robot, walks down the stairs, lifts a “paw” to open doors or to call the elevator and trots along corridors. Darkness is no problem: it knows the place perfectly, having 3D-mapped it. Its laser sensors keep it informed about its precise path, location and potential obstacles. It conducts its inspection across several rooms. Its cameras zoom in on counters, recording the measurements displayed. Its thermal sensors record the temperature of machines and equipment and its ultrasound microphone checks for potential gas leaks. The robot also inspects lever positions as well as the correct positioning of regulatory fire extinguishers. As the electronic buzz of its engines resumes, it carries on working tirelessly.

After a little over two hours of inspection, the robot returns to its docking station for recharging. It will soon head back out to conduct its next solitary patrol. ANYmal played alongside Mulder and Scully in the “X-Files” TV series*, but it is in no way a Hollywood robot. It genuinely exists and surveillance missions are part of its very near future.

Off-shore oil platforms, the first test fields and probably the first actual application of ANYmal. ©ANYbotics

This quadruped robot was designed by ANYbotics, a spinoff of the Swiss Federal Institute of Technology in Zurich (ETH Zurich). Made of carbon fibre and aluminium, it weighs about thirty kilos. It is fully ruggedised, water- and dust-proof (IP-67). A kevlar belly protects its main body, carrying its powerful brain, batteries, network device, power management system and navigational systems.

ANYmal was designed for all types of terrain, including rubble, sand or snow. It has been field tested on industrial sites and is at ease with new obstacles to overcome (and it can even get up after a fall). Depending on its mission, its batteries last 2 to 4 hours.

On its jointed legs, protected by rubber pads, it can walk (at the speed of human steps), trot, climb, curl upon itself to crawl, carry a load or even jump and dance. It is the need to move on all surfaces that has driven its designers to choose a quadruped. “Biped robots are not easy to stabilise, especially on irregular terrain” explains Dr Péter Fankhauser, co-founder and chief business development officer of ANYbotics. “Wheeled or tracked robots can carry heavy loads, but they are bulky and less agile. Flying drones are highly mobile, but cannot carry load, handle objects or operate in bad weather conditions. We believe that quadrupeds combine the optimal characteristics, both in terms of mobility and versatility.”

What served as a source of inspiration for the team behind the project, the Robotic Systems Lab of the ETH Zurich, is a champion of agility on rugged terrain: the mountain goat. “We are of course still a long way” says Fankhauser. “However, it remains our objective on the longer term.

The first prototype, ALoF, was designed already back in 2009. It was still rather slow, very rigid and clumsy – more of a proof of concept than a robot ready for application. In 2012, StarlETH, fitted with spring joints, could hop, jump and climb. It was with this robot that the team started participating in 2014 in ARGOS, a full-scale challenge, launched by the Total oil group. The idea was to present a robot capable of inspecting an off-shore drilling station autonomously.

Up against dozens of competitors, the ETH Zurich team was the only team to enter the competition with such a quadrupedal robot. They didn’t win, but the multiple field tests were growing evermore convincing. Especially because, during the challenge, the team designed new joints with elastic actuators made in-house. These joints, inspired by tendons and muscles, are compact, sealed and include their own custom control electronics. They can regulate joint torque, position and impedance directly. Thanks to this innovation, the team could enter the same competition with a new version of its robot, ANYmal, fitted with three joints on each leg.

The ARGOS experience confirms the relevance of the selected means of locomotion. “Our robot is lighter, takes up less space on site and it is less noisy” says Fankhauser. “It also overcomes bigger obstacles than larger wheeled or tracked robots!” As ANYmal generated public interest and its transformation into a genuine product seemed more than possible, the startup ANYbotics was launched in 2016. It sold not only its robot, but also its revolutionary joints, called ANYdrive.

Today, ANYmal is not yet ready for sale to companies. However, ANYbotics has a growing number of partnerships with several industries, testing the robot for a few days or several weeks, for all types of tasks. Last October, for example, ANYmal navigated its way through the dark sewage system of the city of Zurich in order to test its capacity to help workers in similar difficult, repetitive and even dangerous tasks.

Why such an early interest among companies? “Because many companies want to integrate robots into their maintenance tasks” answers Fankhauser. “With ANYmal, they can actually evaluate its feasibility and plan their strategy. Eventually, both the architecture and the equipment of buildings could be rethought to be adapted to these maintenance robots”.

ANYmal requires ruggedised, sealed and extremely reliable interconnection solutions, such as LEMO. ©ANYbotics

Through field demonstrations and testing, ANYbotics can gather masses of information (up to 50,000 measurements are recorded every second during each test!) “It helps us to shape the product.” In due time, the startup will be ready to deliver a commercial product which really caters for companies’ needs.

Inspection and surveillance tasks on industrial sites are not the only applications considered. The startup is also thinking of agricultural inspections – with its onboard sensors, ANYmal is capable of mapping its environment, measuring bio mass and even taking soil samples. In the longer term, it could also be used for search and rescue operations. By the way, the robot can already be switched to “remote control” mode at any time and can be easily tele-operated. It is also capable of live audio and video transmission.

The transition from the prototype to the marketed product stage will involve a number of further developments. These include increasing ANYmal’s agility and speed, extending its capacity to map large-scale environments, improving safety, security, user handling and integrating the system with the customer’s data management software. It will also be necessary to enhance the robot’s reliability “so that it can work for days, weeks, or even months without human supervision.” All required certifications will have to be obtained. The locomotion system, which had triggered the whole business, is only one of a number of considerations of ANYbotics.

Designed for extreme environments, for ANYmal smoke is not a problem and it can walk in the snow, through rubble or in water. ©ANYbotics

The startup is not all alone. In fact, it has sold ANYmal robots to a dozen major universities who use them to develop their know-how in robotics. The startup has also founded ANYmal Research, a community including members such as Toyota Research Institute, the German Aerospace Center and the computer company Nvidia. Members have full access to ANYmal’s control software, simulations and documentation. Sharing has boosted both software and hardware ideas and developments (built on ROS, the open-source Robot Operating System). In particular, payload variations, providing for expandability and scalability. For instance, one of the universities uses a robotic arm which enables ANYmal to grasp or handle objects and open doors.

Among possible applications, ANYbotics mentions entertainment. It is not only about playing in more films or TV series, but rather about participating in various attractions (trade shows, museums, etc.). “ANYmal is so novel that it attracts a great amount of interest” confirms Fankhauser with a smile. “Whenever we present it somewhere, people gather around.”

Videos of these events show a fascinated and sometimes slightly fearful audience, when ANYmal gets too close to them. Is it fear of the “bad robot”? “This fear exists indeed and we are happy to be able to use ANYmal also to promote public awareness towards robotics and robots.” Reminiscent of a young dog, ANYmal is truly adapted for the purpose.

However, Péter Fankhauser softens the image of humans and sophisticated robots living together. “These coming years, robots will continue to work in the background, like they have for a long time in factories. Then, they will be used in public places in a selective and targeted way, for instance for dangerous missions. We will need to wait another ten years before animal-like robots, such as ANYmal will share our everyday lives!”

At the Consumer Electronics Show (CES) in Las Vegas in January, Continental, the German automotive manufacturing company, used robots to demonstrate a last-mile delivery. It showed ANYmal getting out of an autonomous vehicle with a parcel, climbing onto the front porch, lifting a paw to ring the doorbell, depositing the parcel before getting back into the vehicle. This futuristic image seems very close indeed.

*X-Files, season 11, episode 7, aired in February 2018 Continue reading

Posted in Human Robots

#435748 Video Friday: This Robot Is Like a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.

[ Tertill ]

Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.

[ Team BlackSheep ]

ICYMI: iRobot announced this week that it has acquired Root Robotics.

[ iRobot ]

This Boston Dynamics parody video went viral this week.

The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?

This is still our favorite Boston Dynamics parody video:

[ Corridor ]

Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.

[ CMU ]

Organic chemists, prepare to meet your replacement:

Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).

[ arXiv ] via [ NTU ]

So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.

[ Montreal Gazette ]

For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.

[ Nikkei ]

The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.

[ SML ]

As drone shows go, this one is pretty good.

[ CCTV ]

Here’s a remote controlled robot shooting stuff with a very large gun.

[ HDT ]

Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.

[ Misty Robotics ]

If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!

[ Flyability ]

The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.

[ Soft Robotics ]

What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.

This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.

[ Num Opt Wkshp ]

Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.

[ CCDC ARL ]

Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.

[ AI Podcast ]

In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.

Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435738 Boing Goes the Trampoline Robot

There are a handful of quadrupedal robots out there that are highly dynamic, with the ability to run and jump, but those robots tend to be rather expensive and complicated, requiring powerful actuators and legs with elasticity. Boxing Wang, a Ph.D. student in the College of Control Science and Engineering at Zhejiang University in China, contacted us to share a project he’s been working to investigate quadruped jumping with simple, affordable hardware.

“The motivation for this project is quite simple,” Boxing says. “I wanted to study quadrupedal jumping control, but I didn’t have custom-made powerful actuators, and I didn’t want to have to design elastic legs. So I decided to use a trampoline to make a normal servo-driven quadruped robot to jump.”

Boxing and his colleagues had wanted to study quadrupedal running and jumping, so they built this robot with the most powerful servos they had access to: Kondo KRS6003RHV actuators, which have a maximum torque of 6 Nm. After some simple testing, it became clear that the servos were simply not fast or powerful enough to get the robot to jump, and that an elastic element was necessary to store energy to help the robot get off the ground.

“Normally, people would choose elastic legs,” says Boxing. “But nobody in my lab knew for sure how to design them. If we tried making elastic legs and we failed to make the robot jump, we couldn’t be sure whether the problem was the legs or the control algorithms. For hardware, we decided that it’s better to start with something reliable, something that definitely won’t be the source of the problem.”

As it turns out, all you need is a trampoline, an inertial measurement unit (IMU), and little tactile switches on the end of each foot to detect touch-down and lift-off events, and you can do some useful jumping research without a jumping robot. And the trampoline has other benefits as well—because it’s stiffer at the edges than at the center, for example, the robot will tend to center itself on the trampoline, and you get some warning before things go wrong.

“I can’t say that it’s a breakthrough to make a quadruped robot jump on a trampoline,” Boxing tells us. “But I believe this is useful for prototype testing, especially for people who are interested in quadrupedal jumping control but without a suitable robot at hand.”

To learn more about the project, we emailed him some additional questions.

IEEE Spectrum: Where did this idea come from?

Boxing Wang: The idea of the trampoline came while we were drinking milk tea. I don’t know why it came up, maybe someone saw a trampoline in a gym recently. And I don’t remember who proposed it exactly. It was just like someone said it unintentionally. But I realized that a trampoline would be a perfect choice. It’s reliable, easy to buy, and should have a similar dynamic model with the one of jumping with springy legs (we have briefly analyzed this in a paper). So I decided to try the trampoline.

How much do you think you can learn using a quadruped on a trampoline, instead of using a jumping quadruped?

Generally speaking, no contact surfaces are strictly rigid. They all have elasticity. So there are no essential differences between jumping on a trampoline and jumping on a rigid surface. However, using a quadruped on a trampoline can give you more information on how to make use of elasticity to make jumping easier and more efficient. You can use quadruped robots with springy legs to address the same problem, but that usually requires much more time on hardware design.

We prefer to treat the trampoline experiment as a kind of early test for further real jumping quadruped design. Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure. Due to the similarity between jumping on a trampoline with rigid legs and jumping on hard surfaces with springy legs, the control algorithms you develop could be transferred to hard-surface jumping robots.

“Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure”

Do you think that this idea can be beneficial for other kinds of robotics research?

Yes. For jumping quadrupeds with springy legs, the control algorithms could be first designed through trampoline tests using simple rigid legs. And the hardware design for elastic legs could be accelerated with the help of the control algorithms you design. In addition, we believe our work could be a good example of using a position-control robot to realize dynamic motions such as jumping, or even running.

Unlike other dynamic robots, every active joint in our robot is controlled through commercial position-control servos and not custom torque control motors. Most people don’t think that a position-control robot could perform highly dynamic motions such as jumping, because position-control motors usually mean high a gear ratio and slow response. However, our work indicates that, with the help of elasticity, stable jumping could be realized through position-control servos. So for those who already have a position-control robot at hand, they could explore the potential of their robot through trampoline tests.

Why is teaching a robot to jump important?

There are many scenarios where a jumping robot is needed. For example, a real jumping quadruped could be used to design a running quadruped. Both experience moments when all four legs are in the air, and it is easier to start from jumping and then move to running. Specifically, hopping or pronking can easily transform to bounding if the pitch angle is not strictly controlled. A bounding quadruped is similar to a running rabbit, so for now it can already be called a running quadruped.

To the best of our knowledge, a practical use of jumping quadrupeds could be planet exploration, just like what SpaceBok was designed for. In a low-gravity environment, jumping is more efficient than walking, and it’s easier to jump over obstacles. But if I had a jumping quadruped on Earth, I would teach it to catch a ball that I throw at it by jumping. It would be fantastic!

That would be fantastic.

Since the whole point of the trampoline was to get jumping software up and running with a minimum of hardware, the next step is to add some springy legs to the robot so that the control system the researchers developed can be tested on hard surfaces. They have a journal paper currently under revision, and Boxing Wang is joined as first author by his adviser Chunlin Zhou, undergrads Ziheng Duan and Qichao Zhu, and researchers Jun Wu and Rong Xiong. Continue reading

Posted in Human Robots