Tag Archives: soon
#433803 This Week’s Awesome Stories From ...
ARTIFICIAL INTELLIGENCE
The AI Cold War That Could Doom Us All
Nicholas Thompson | Wired
“At the dawn of a new stage in the digital revolution, the world’s two most powerful nations are rapidly retreating into positions of competitive isolation, like players across a Go board. …Is the arc of the digital revolution bending toward tyranny, and is there any way to stop it?”
LONGEVITY
Finally, the Drug That Keeps You Young
Stephen S. Hall | MIT Technology Review
“The other thing that has changed is that the field of senescence—and the recognition that senescent cells can be such drivers of aging—has finally gained acceptance. Whether those drugs will work in people is still an open question. But the first human trials are under way right now.”
SYNTHETIC BIOLOGY
Ginkgo Bioworks Is Turning Human Cells Into On-Demand Factories
Megan Molteni | Wired
“The biotech unicorn is already cranking out an impressive number of microbial biofactories that grow and multiply and burp out fragrances, fertilizers, and soon, psychoactive substances. And they do it at a fraction of the cost of traditional systems. But Kelly is thinking even bigger.”
CYBERNETICS
Thousands of Swedes Are Inserting Microchips Under Their Skin
Maddy Savage | NPR
“Around the size of a grain of rice, the chips typically are inserted into the skin just above each user’s thumb, using a syringe similar to that used for giving vaccinations. The procedure costs about $180. So many Swedes are lining up to get the microchips that the country’s main chipping company says it can’t keep up with the number of requests.”
ART
AI Art at Christie’s Sells for $432,500
Gabe Cohn | The New York Times
“Last Friday, a portrait produced by artificial intelligence was hanging at Christie’s New York opposite an Andy Warhol print and beside a bronze work by Roy Lichtenstein. On Thursday, it sold for well over double the price realized by both those pieces combined.”
ETHICS
Should a Self-Driving Car Kill the Baby or the Grandma? Depends on Where You’re From
Karen Hao | MIT Technology Review
“The researchers never predicted the experiment’s viral reception. Four years after the platform went live, millions of people in 233 countries and territories have logged 40 million decisions, making it one of the largest studies ever done on global moral preferences.”
TECHNOLOGY
The Rodney Brooks Rules for Predicting a Technology’s Success
Rodney Brooks | IEEE Spectrum
“Building electric cars and reusable rockets is fairly easy. Building a nuclear fusion reactor, flying cars, self-driving cars, or a Hyperloop system is very hard. What makes the difference?”
Image Source: spainter_vfx / Shutterstock.com Continue reading →
#433770 Will Tech Make Insurance Obsolete in the ...
We profit from it, we fear it, and we find it impossibly hard to quantify: risk.
While not the sexiest of industries, insurance can be a life-saving protector, pooling everyone’s premiums to safeguard against some of our greatest, most unexpected losses.
One of the most profitable in the world, the insurance industry exceeded $1.2 trillion in annual revenue since 2011 in the US alone.
But risk is becoming predictable. And insurance is getting disrupted fast.
By 2025, we’ll be living in a trillion-sensor economy. And as we enter a world where everything is measured all the time, we’ll start to transition from protecting against damages to preventing them in the first place.
But what happens to health insurance when Big Brother is always watching? Do rates go up when you sneak a cigarette? Do they go down when you eat your vegetables?
And what happens to auto insurance when most cars are autonomous? Or life insurance when the human lifespan doubles?
For that matter, what happens to insurance brokers when blockchain makes them irrelevant?
In this article, I’ll be discussing four key transformations:
Sensors and AI replacing your traditional broker
Blockchain
The ecosystem approach
IoT and insurance connectivity
Let’s dive in.
AI and the Trillion-Sensor Economy
As sensors continue to proliferate across every context—from smart infrastructure to millions of connected home devices to medicine—smart environments will allow us to ask any question, anytime, anywhere.
And as I often explain, once your AI has access to this treasure trove of ubiquitous sensor data in real time, it will be the quality of your questions that make or break your business.
But perhaps the most exciting insurance application of AI’s convergence with sensors is in healthcare. Tremendous advances in genetic screening are empowering us with predictive knowledge about our long-term health risks.
Leading the charge in genome sequencing, Illumina predicts that in a matter of years, decoding the full human genome will drop to $100, taking merely one hour to complete. Other companies are racing to get you sequences faster and cheaper.
Adopting an ecosystem approach, incumbent insurers and insurtech firms will soon be able to collaborate to provide risk-minimizing services in the health sector. Using sensor data and AI-driven personalized recommendations, insurance partnerships could keep consumers healthy, dramatically reducing the cost of healthcare.
Some fear that information asymmetry will allow consumers to learn of their health risks and leave insurers in the dark. However, both parties could benefit if insurers become part of the screening process.
A remarkable example of this is Gilad Meiri’s company, Neura AI. Aiming to predict health patterns, Neura has developed machine learning algorithms that analyze data from all of a user’s connected devices (sometimes from up to 54 apps!).
Neura predicts a user’s behavior and draws staggering insights about consumers’ health risks. Meiri soon began selling his personal risk assessment tool to insurers, who could then help insured customers mitigate long-term health risks.
But artificial intelligence will impact far more than just health insurance.
In October of 2016, a claim was submitted to Lemonade, the world’s first peer-to-peer insurance company. Rather than being processed by a human, every step in this claim resolution chain—from initial triage through fraud mitigation through final payment—was handled by an AI.
This transaction marks the first time an AI has processed an insurance claim. And it won’t be the last. A traditional human-processed claim takes 40 days to pay out. In Lemonade’s case, payment was transferred within three seconds.
However, Lemonade’s achievement only marks a starting point. Over the course of the next decade, nearly every facet of the insurance industry will undergo a similarly massive transformation.
New business models like peer-to-peer insurance are replacing traditional brokerage relationships, while AI and blockchain pairings significantly reduce the layers of bureaucracy required (with each layer getting a cut) for traditional insurance.
Consider Juniper, a startup that scrapes social media to build your risk assessment, subsequently asking you 12 questions via an iPhone app. Geared with advanced analytics, the platform can generate a million-dollar life insurance policy, approved in less than five minutes.
But what’s keeping all your data from unwanted hands?
Blockchain Building Trust
Current distrust in centralized financial services has led to staggering rates of underinsurance. Add to this fear of poor data and privacy protection, particularly in the wake of 2017’s widespread cybercriminal hacks.
Enabling secure storage and transfer of personal data, blockchain holds remarkable promise against the fraudulent activity that often plagues insurance firms.
The centralized model of insurance companies and other organizations is becoming redundant. Developing blockchain-based solutions for capital markets, Symbiont develops smart contracts to execute payments with little to no human involvement.
But distributed ledger technology (DLT) is enabling far more than just smart contracts.
Also targeting insurance is Tradle, leveraging blockchain for its proclaimed goal of “building a trust provisioning network.” Built around “know-your-customer” (KYC) data, Tradle aims to verify KYC data so that it can be securely forwarded to other firms without any further verification.
By requiring a certain number of parties to reuse pre-verified data, the platform makes your data much less vulnerable to hacking and allows you to keep it on a personal device. Only its verification—let’s say of a transaction or medical exam—is registered in the blockchain.
As insurance data grow increasingly decentralized, key insurance players will experience more and more pressure to adopt an ecosystem approach.
The Ecosystem Approach
Just as exponential technologies converge to provide new services, exponential businesses must combine the strengths of different sectors to expand traditional product lines.
By partnering with platform-based insurtech firms, forward-thinking insurers will no longer serve only as reactive policy-providers, but provide risk-mitigating services as well.
Especially as digital technologies demonetize security services—think autonomous vehicles—insurers must create new value chains and span more product categories.
For instance, France’s multinational AXA recently partnered with Alibaba and Ant Financial Services to sell a varied range of insurance products on Alibaba’s global e-commerce platform at the click of a button.
Building another ecosystem, Alibaba has also collaborated with Ping An Insurance and Tencent to create ZhongAn Online Property and Casualty Insurance—China’s first internet-only insurer, offering over 300 products. Now with a multibillion-dollar valuation, Zhong An has generated about half its business from selling shipping return insurance to Alibaba consumers.
But it doesn’t stop there. Insurers that participate in digital ecosystems can now sell risk-mitigating services that prevent damage before it occurs.
Imagine a corporate manufacturer whose sensors collect data on environmental factors affecting crop yield in an agricultural community. With the backing of investors and advanced risk analytics, such a manufacturer could sell crop insurance to farmers. By implementing an automated, AI-driven UI, they could automatically make payments when sensors detect weather damage to crops.
Now let’s apply this concept to your house, your car, your health insurance.
What’s stopping insurers from partnering with third-party IoT platforms to predict fires, collisions, chronic heart disease—and then empowering the consumer with preventive services?
This brings us to the powerful field of IoT.
Internet of Things and Insurance Connectivity
Leap ahead a few years. With a centralized hub like Echo, your smart home protects itself with a network of sensors. While gone, you’ve left on a gas burner and your internet-connected stove notifies you via a home app.
Better yet, home sensors monitoring heat and humidity levels run this data through an AI, which then remotely controls heating, humidity levels, and other connected devices based on historical data patterns and fire risk factors.
Several firms are already working toward this reality.
AXA plans to one day cooperate with a centralized home hub whereby remote monitoring will collect data for future analysis and detect abnormalities.
With remote monitoring and app-centralized control for users, MonAXA is aimed at customizing insurance bundles. These would reflect exact security features embedded in smart homes.
Wouldn’t you prefer not to have to rely on insurance after a burglary? With digital ecosystems, insurers may soon prevent break-ins from the start.
By gathering sensor data from third parties on neighborhood conditions, historical theft data, suspicious activity and other risk factors, an insurtech firm might automatically put your smart home on high alert, activating alarms and specialized locks in advance of an attack.
Insurance policy premiums are predicted to vastly reduce with lessened likelihood of insured losses. But insurers moving into preventive insurtech will likely turn a profit from other areas of their business. PricewaterhouseCoopers predicts that the connected home market will reach $149 billion USD by 2020.
Let’s look at car insurance.
Car insurance premiums are currently calculated according to the driver and traits of the car. But as more autonomous vehicles take to the roads, not only does liability shift to manufacturers and software engineers, but the risk of collision falls dramatically.
But let’s take this a step further.
In a future of autonomous cars, you will no longer own your car, instead subscribing to Transport as a Service (TaaS) and giving up the purchase of automotive insurance altogether.
This paradigm shift has already begun with Waymo, which automatically provides passengers with insurance every time they step into a Waymo vehicle.
And with the rise of smart traffic systems, sensor-embedded roads, and skyrocketing autonomous vehicle technology, the risks involved in transit only continue to plummet.
Final Thoughts
Insurtech firms are hitting the market fast. IoT, autonomous vehicles and genetic screening are rapidly making us invulnerable to risk. And AI-driven services are quickly pushing conventional insurers out of the market.
By 2024, roll-out of 5G on the ground, as well as OneWeb and Starlink in orbit are bringing 4.2 billion new consumers to the web—most of whom will need insurance. Yet, because of the changes afoot in the industry, none of them will buy policies from a human broker.
While today’s largest insurance companies continue to ignore this fact at their peril (and this segment of the market), thousands of entrepreneurs see it more clearly: as one of the largest opportunities ahead.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: 24Novembers / Shutterstock.com Continue reading →
#433754 This Robotic Warehouse Fills Orders in ...
Shopping is becoming less and less of a consumer experience—or, for many, less of a chore—as the list of things that can be bought online and delivered to our homes grows to include, well, almost anything you can think of. An Israeli startup is working to make shopping and deliveries even faster and cheaper—and they’re succeeding.
Last week, CommonSense Robotics announced the launch of its first autonomous micro-fulfillment center in Tel Aviv. The company claims the facility is the smallest of its type in the world at 6,000 square feet. For comparison’s sake—most fulfillment hubs that incorporate robotics are at least 120,000 square feet. Amazon’s upcoming facility in Bessemer, Alabama will be a massive 855,000 square feet.
The thing about a building whose square footage is in the hundred-thousands is, you can fit a lot of stuff inside it, but there aren’t many places you can fit the building itself, especially not in major urban areas. So most fulfillment centers are outside cities, which means more time and more money to get your Moroccan oil shampoo, or your vegetable garden starter kit, or your 100-pack of organic protein bars from that fulfillment center to your front door.
CommonSense Robotics built the Tel Aviv center in an area that was previously thought too small for warehouse infrastructure. “In order to fit our site into small, tight urban spaces, we’ve designed every single element of it to optimize for space efficiency,” said Avital Sterngold, VP of operations. Using a robotic sorting system that includes hundreds of robots, plus AI software that assigns them specific tasks, the facility can prepare orders in less than five minutes end-to-end.
It’s not all automated, though—there’s still some human labor in the mix. The robots fetch goods and bring them to a team of people, who then pack the individual orders.
CommonSense raised $20 million this year in a funding round led by Palo Alto-based Playground Global. The company hopes to expand its operations to the US and UK in 2019. Its business model is to charge retailers a fee for each order fulfilled, while maintaining ownership and operation of the fulfillment centers. The first retailers to jump on the bandwagon were Super-Pharm, a drugstore chain, and Rami Levy, a retail supermarket chain.
“Staying competitive in today’s market is anchored by delivering orders quickly and determining how to fulfill and deliver orders efficiently, which are always the most complex aspects of any ecommerce operation. With robotics, we will be able to fulfill and deliver orders in under one hour, all while saving costs on said fulfillment and delivery,” said Super-Pharm VP Yossi Cohen. “Before CommonSense Robotics, we offered our customers next-day home delivery. With this partnership, we are now able to offer our customers same-day delivery and will very soon be offering them one-hour delivery.”
Long live the instant gratification economy—and the increasingly sophisticated technology that’s enabling it.
Image Credit: SasinTipchai / Shutterstock.com Continue reading →
#433748 Could Tech Make Government As We Know It ...
Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.
At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.
In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.
Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.
In this article, we will cover three key trends:
Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency
Let’s dive in.
Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.
Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.
Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.
With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.
Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.
Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.
But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.
After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.
The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.
We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.
And what better to accelerate digital governance than AI?
Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.
Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.
As AI infuses government services, emerging applications have caught my eye:
Smart Borders and Checkpoints
With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.
Policing and Security
Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.
Smart Courts
AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?
Enter the blockchain.
Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.
As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.
First, blockchain will be a boon for regulatory compliance.
As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.
Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.
Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.
But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.
Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.
Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.
Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.
Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.
But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.
Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.
One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.
In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?
The possibilities are endless, and only we can shape them.
Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: ArtisticPhoto / Shutterstock.com Continue reading →
#433655 First-Ever Grad Program in Space Mining ...
Maybe they could call it the School of Space Rock: A new program being offered at the Colorado School of Mines (CSM) will educate post-graduate students on the nuts and bolts of extracting and using valuable materials such as rare metals and frozen water from space rocks like asteroids or the moon.
Officially called Space Resources, the graduate-level program is reputedly the first of its kind in the world to offer a course in the emerging field of space mining. Heading the program is Angel Abbud-Madrid, director of the Center for Space Resources at Mines, a well-known engineering school located in Golden, Colorado, where Molson Coors taps Rocky Mountain spring water for its earthly brews.
The first semester for the new discipline began last month. While Abbud-Madrid didn’t immediately respond to an interview request, Singularity Hub did talk to Chris Lewicki, president and CEO of Planetary Resources, a space mining company whose founders include Peter Diamandis, Singularity University co-founder.
A former NASA engineer who worked on multiple Mars missions, Lewicki says the Space Resources program at CSM, with its multidisciplinary focus on science, economics, and policy, will help students be light years ahead of their peers in the nascent field of space mining.
“I think it’s very significant that they’ve started this program,” he said. “Having students with that kind of background exposure just allows them to be productive on day one instead of having to kind of fill in a lot of things for them.”
Who would be attracted to apply for such a program? There are many professionals who could be served by a post-baccalaureate certificate, master’s degree, or even Ph.D. in Space Resources, according to Lewicki. Certainly aerospace engineers and planetary scientists would be among the faces in the classroom.
“I think it’s [also] people who have an interest in what I would call maybe space robotics,” he said. Lewicki is referring not only to the classic example of robotic arms like the Canadarm2, which lends a hand to astronauts aboard the International Space Station, but other types of autonomous platforms.
One example might be Planetary Resources’ own Arkyd-6, a small, autonomous satellite called a CubeSat launched earlier this year to test different technologies that might be used for deep-space exploration of resources. The proof-of-concept was as much a test for the technology—such as the first space-based use of a mid-wave infrared imager to detect water resources—as it was for being able to work in space on a shoestring budget.
“We really proved that doing one of these billion-dollar science missions to deep space can be done for a lot less if you have a very focused goal, and if you kind of cut a lot of corners and then put some commercial approaches into those things,” Lewicki said.
A Trillion-Dollar Industry
Why space mining? There are at least a trillion reasons.
Astrophysicist Neil deGrasse Tyson famously said that the first trillionaire will be the “person who exploits the natural resources on asteroids.” That’s because asteroids—rocky remnants from the formation of our solar system more than four billion years ago—harbor precious metals, ranging from platinum and gold to iron and nickel.
For instance, one future target of exploration by NASA—an asteroid dubbed 16 Psyche, orbiting the sun in the asteroid belt between Mars and Jupiter—is worth an estimated $10,000 quadrillion. It’s a number so mind-bogglingly big that it would crash the global economy, if someone ever figured out how to tow it back to Earth without literally crashing it into the planet.
Living Off the Land
Space mining isn’t just about getting rich. Many argue that humanity’s ability to extract resources in space, especially water that can be refined into rocket fuel, will be a key technology to extend our reach beyond near-Earth space.
The presence of frozen water around the frigid polar regions of the moon, for example, represents an invaluable source to power future deep-space missions. Splitting H20 into its component elements of hydrogen and oxygen would provide a nearly inexhaustible source of rocket fuel. Today, it costs $10,000 to put a pound of payload in Earth orbit, according to NASA.
Until more advanced rocket technology is developed, the moon looks to be the best bet for serving as the launching pad to Mars and beyond.
Moon Versus Asteroid
However, Lewicki notes that despite the moon’s proximity and our more intimate familiarity with its pockmarked surface, that doesn’t mean a lunar mission to extract resources is any easier than a multi-year journey to a fast-moving asteroid.
For one thing, fighting gravity to and from the moon is no easy feat, as the moon has a significantly stronger gravitational field than an asteroid. Another challenge is that the frozen water is located in permanently shadowed lunar craters, meaning space miners can’t rely on solar-powered equipment, but on some sort of external energy source.
And then there’s the fact that moon craters might just be the coldest places in the solar system. NASA’s Lunar Reconnaissance Orbiter found temperatures plummeted as low as 26 Kelvin, or more than minus 400 degrees Fahrenheit. In comparison, the coldest temperatures on Earth have been recorded near the South Pole in Antarctica—about minus 148 degrees F.
“We don’t operate machines in that kind of thermal environment,” Lewicki said of the extreme temperatures detected in the permanent dark regions of the moon. “Antarctica would be a balmy desert island compared to a lunar polar crater.”
Of course, no one knows quite what awaits us in the asteroid belt. Answers may soon be forthcoming. Last week, the Japan Aerospace Exploration Agency landed two small, hopping rovers on an asteroid called Ryugu. Meanwhile, NASA hopes to retrieve a sample from the near-Earth asteroid Bennu when its OSIRIS-REx mission makes contact at the end of this year.
No Bucks, No Buck Rogers
Visionaries like Elon Musk and Jeff Bezos talk about colonies on Mars, with millions of people living and working in space. The reality is that there’s probably a reason Buck Rogers was set in the 25th century: It’s going to take a lot of money and a lot of time to realize those sci-fi visions.
Or, as Lewicki put it: “No bucks, no Buck Rogers.”
The cost of operating in outer space can be prohibitive. Planetary Resources itself is grappling with raising additional funding, with reports this year about layoffs and even a possible auction of company assets.
Still, Lewicki is confident that despite economic and technical challenges, humanity will someday exceed even the boldest dreamers—skyscrapers on the moon, interplanetary trips to Mars—as judged against today’s engineering marvels.
“What we’re doing is going to be very hard, very painful, and almost certainly worth it,” he said. “Who would have thought that there would be a job for a space miner that you could go to school for, even just five or ten years ago. Things move quickly.”
Image Credit: M-SUR / Shutterstock.com Continue reading →