Tag Archives: soon

#434616 What Games Are Humans Still Better at ...

Artificial intelligence (AI) systems’ rapid advances are continually crossing rows off the list of things humans do better than our computer compatriots.

AI has bested us at board games like chess and Go, and set astronomically high scores in classic computer games like Ms. Pacman. More complex games form part of AI’s next frontier.

While a team of AI bots developed by OpenAI, known as the OpenAI Five, ultimately lost to a team of professional players last year, they have since been running rampant against human opponents in Dota 2. Not to be outdone, Google’s DeepMind AI recently took on—and beat—several professional players at StarCraft II.

These victories beg the questions: what games are humans still better at than AI? And for how long?

The Making Of AlphaStar
DeepMind’s results provide a good starting point in a search for answers. The version of its AI for StarCraft II, dubbed AlphaStar, learned to play the games through supervised learning and reinforcement learning.

First, AI agents were trained by analyzing and copying human players, learning basic strategies. The initial agents then played each other in a sort of virtual death match where the strongest agents stayed on. New iterations of the agents were developed and entered the competition. Over time, the agents became better and better at the game, learning new strategies and tactics along the way.

One of the advantages of AI is that it can go through this kind of process at superspeed and quickly develop better agents. DeepMind researchers estimate that the AlphaStar agents went through the equivalent of roughly 200 years of game time in about 14 days.

Cheating or One Hand Behind the Back?
The AlphaStar AI agents faced off against human professional players in a series of games streamed on YouTube and Twitch. The AIs trounced their human opponents, winning ten games on the trot, before pro player Grzegorz “MaNa” Komincz managed to salvage some pride for humanity by winning the final game. Experts commenting on AlphaStar’s performance used words like “phenomenal” and “superhuman”—which was, to a degree, where things got a bit problematic.

AlphaStar proved particularly skilled at controlling and directing units in battle, known as micromanagement. One reason was that it viewed the whole game map at once—something a human player is not able to do—which made it seemingly able to control units in different areas at the same time. DeepMind researchers said the AIs only focused on a single part of the map at any given time, but interestingly, AlphaStar’s AI agent was limited to a more restricted camera view during the match “MaNA” won.

Potentially offsetting some of this advantage was the fact that AlphaStar was also restricted in certain ways. For example, it was prevented from performing more clicks per minute than a human player would be able to.

Where AIs Struggle
Games like StarCraft II and Dota 2 throw a lot of challenges at AIs. Complex game theory/ strategies, operating with imperfect/incomplete information, undertaking multi-variable and long-term planning, real-time decision-making, navigating a large action space, and making a multitude of possible decisions at every point in time are just the tip of the iceberg. The AIs’ performance in both games was impressive, but also highlighted some of the areas where they could be said to struggle.

In Dota 2 and StarCraft II, AI bots have seemed more vulnerable in longer games, or when confronted with surprising, unfamiliar strategies. They seem to struggle with complexity over time and improvisation/adapting to quick changes. This could be tied to how AIs learn. Even within the first few hours of performing a task, humans tend to gain a sense of familiarity and skill that takes an AI much longer. We are also better at transferring skill from one area to another. In other words, experience playing Dota 2 can help us become good at StarCraft II relatively quickly. This is not the case for AI—yet.

Dwindling Superiority
While the battle between AI and humans for absolute superiority is still on in Dota 2 and StarCraft II, it looks likely that AI will soon reign supreme. Similar things are happening to other types of games.

In 2017, a team from Carnegie Mellon University pitted its Libratus AI against four professionals. After 20 days of No Limit Texas Hold’em, Libratus was up by $1.7 million. Another likely candidate is the destroyer of family harmony at Christmas: Monopoly.

Poker involves bluffing, while Monopoly involves negotiation—skills you might not think AI would be particularly suited to handle. However, an AI experiment at Facebook showed that AI bots are more than capable of undertaking such tasks. The bots proved skilled negotiators, and developed negotiating strategies like pretending interest in one object while they were interested in another altogether—bluffing.

So, what games are we still better at than AI? There is no precise answer, but the list is getting shorter at a rapid pace.

The Aim Of the Game
While AI’s mastery of games might at first glance seem an odd area to focus research on, the belief is that the way AI learn to master a game is transferrable to other areas.

For example, the Libratus poker-playing AI employed strategies that could work in financial trading or political negotiations. The same applies to AlphaStar. As Oriol Vinyals, co-leader of the AlphaStar project, told The Verge:

“First and foremost, the mission at DeepMind is to build an artificial general intelligence. […] To do so, it’s important to benchmark how our agents perform on a wide variety of tasks.”

A 2017 survey of more than 350 AI researchers predicts AI could be a better driver than humans within ten years. By the middle of the century, AI will be able to write a best-selling novel, and a few years later, it will be better than humans at surgery. By the year 2060, AI may do everything better than us.

Whether you think this is a good or a bad thing, it’s worth noting that AI has an often overlooked ability to help us see things differently. When DeepMind’s AlphaGo beat human Go champion Lee Sedol, the Go community learned from it, too. Lee himself went on a win streak after the match with AlphaGo. The same is now happening within the Dota 2 and StarCraft II communities that are studying the human vs. AI games intensely.

More than anything, AI’s recent gaming triumphs illustrate how quickly artificial intelligence is developing. In 1997, Dr. Piet Hut, an astrophysicist at the Institute for Advanced Study at Princeton and a GO enthusiast, told the New York Times that:

”It may be a hundred years before a computer beats humans at Go—maybe even longer.”

Image Credit: Roman Kosolapov / Shutterstock.com Continue reading

Posted in Human Robots

#434580 How Genome Sequencing and Senolytics Can ...

The causes of aging are extremely complex and unclear. With the dramatic demonetization of genome reading and editing over the past decade, and Big Pharma, startups, and the FDA starting to face aging as a disease, we are starting to find practical ways to extend our healthspan.

Here, in Part 2 of a series of blogs on longevity and vitality, I explore how genome sequencing and editing, along with new classes of anti-aging drugs, are augmenting our biology to further extend our healthy lives.

In this blog I’ll cover two classes of emerging technologies:

Genome Sequencing and Editing;
Senolytics, Nutraceuticals & Pharmaceuticals.

Let’s dive in.

Genome Sequencing & Editing
Your genome is the software that runs your body.

A sequence of 3.2 billion letters makes you “you.” These base pairs of A’s, T’s, C’s, and G’s determine your hair color, your height, your personality, your propensity to disease, your lifespan, and so on.

Until recently, it’s been very difficult to rapidly and cheaply “read” these letters—and even more difficult to understand what they mean.

Since 2001, the cost to sequence a whole human genome has plummeted exponentially, outpacing Moore’s Law threefold. From an initial cost of $3.7 billion, it dropped to $10 million in 2006, and to $5,000 in 2012.

Today, the cost of genome sequencing has dropped below $500, and according to Illumina, the world’s leading sequencing company, the process will soon cost about $100 and take about an hour to complete.

This represents one of the most powerful and transformative technology revolutions in healthcare.

When we understand your genome, we’ll be able to understand how to optimize “you.”

We’ll know the perfect foods, the perfect drugs, the perfect exercise regimen, and the perfect supplements, just for you.
We’ll understand what microbiome types, or gut flora, are ideal for you (more on this in a later blog).
We’ll accurately predict how specific sedatives and medicines will impact you.
We’ll learn which diseases and illnesses you’re most likely to develop and, more importantly, how to best prevent them from developing in the first place (rather than trying to cure them after the fact).

CRISPR Gene Editing
In addition to reading the human genome, scientists can now edit a genome using a naturally-occurring biological system discovered in 1987 called CRISPR/Cas9.

Short for Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9, the editing system was adapted from a naturally-occurring defense system found in bacteria.

Here’s how it works:

The bacteria capture snippets of DNA from invading viruses (or bacteriophage) and use them to create DNA segments known as CRISPR arrays.
The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones), and defend against future invasions.
If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses’ DNA. The bacteria then use Cas9 to cut the DNA apart, which disables the virus.

Most importantly, CRISPR is cheap, quick, easy to use, and more accurate than all previous gene editing methods. As a result, CRISPR/Cas9 has swept through labs around the world as the way to edit a genome.

A short search in the literature will show an exponential rise in the number of CRISPR-related publications and patents.

2018: Filled With CRISPR Breakthroughs
Early results are impressive. Researchers from the University of Chicago recently used CRISPR to genetically engineer cocaine resistance into mice.

Researchers at the University of Texas Southwestern Medical Center used CRISPR to reverse the gene defect causing Duchenne muscular dystrophy (DMD) in dogs (DMD is the most common fatal genetic disease in children).

With great power comes great responsibility, and moral and ethical dilemmas.

In 2015, Chinese scientists sparked global controversy when they first edited human embryo cells in the lab with the goal of modifying genes that would make the child resistant to smallpox, HIV, and cholera.

Three years later, in November 2018, researcher He Jiankui informed the world that the first set of CRISPR-engineered female twins had been delivered.

To accomplish his goal, Jiankui deleted a region of a receptor on the surface of white blood cells known as CCR5, introducing a rare, natural genetic variation that makes it more difficult for HIV to infect its favorite target, white blood cells.

Setting aside the significant ethical conversations, CRISPR will soon provide us the tools to eliminate diseases, create hardier offspring, produce new environmentally resistant crops, and even wipe out pathogens.

Senolytics, Nutraceuticals & Pharmaceuticals
Over the arc of your life, the cells in your body divide until they reach what is known as the Hayflick limit, or the number of times a normal human cell population will divide before cell division stops, which is typically about 50 divisions.

What normally follows next is programmed cell death or destruction by the immune system. A very small fraction of cells, however, become senescent cells and evade this fate to linger indefinitely.

These lingering cells secrete a potent mix of molecules that triggers chronic inflammation, damages the surrounding tissue structures, and changes the behavior of nearby cells for the worse.

Senescent cells appear to be one of the root causes of aging, causing everything from fibrosis and blood vessel calcification, to localized inflammatory conditions such as osteoarthritis, to diminished lung function.

Fortunately, both the scientific and entrepreneurial communities have begun to work on senolytic therapies, moving the technology for selectively destroying senescent cells out of the laboratory and into a half-dozen startup companies.

Prominent companies in the field include the following:

Unity Biotechnology is developing senolytic medicines to selectively eliminate senescent cells with an initial focus on delivering localized therapy in osteoarthritis, ophthalmology and pulmonary disease.
Oisin Biotechnologiesis pioneering a programmable gene therapy that can destroy cells based on their internal biochemistry.
SIWA Therapeuticsis working on an immunotherapy approach to the problem of senescent cells.

In recent years, researchers have identified or designed a handful of senolytic compounds that can curb aging by regulating senescent cells. Two of these drugs that have gained mainstay research traction are rapamycin and metformin.

Rapamycin
Originally extracted from bacteria found on Easter Island, Rapamycin acts on the m-TOR (mechanistic target of rapamycin) pathway to selectively block a key protein that facilitates cell division.

Currently, rapamycin derivatives are widely used as immunosuppression in organ and bone marrow transplants. Research now suggests that use results in prolonged lifespan and enhanced cognitive and immune function.

PureTech Health subsidiary resTORbio (which started 2018 by going public) is working on a rapamycin-based drug intended to enhance immunity and reduce infection. Their clinical-stage RTB101 drug works by inhibiting part of the mTOR pathway.

Results of the drug’s recent clinical trial include:

Decreased incidence of infection
Improved influenza vaccination response
A 30.6 percent decrease in respiratory tract infections

Impressive, to say the least.

Metformin
Metformin is a widely-used generic drug for mitigating liver sugar production in Type 2 diabetes patients.

Researchers have found that Metformin also reduces oxidative stress and inflammation, which otherwise increase as we age.

There is strong evidence that Metformin can augment cellular regeneration and dramatically mitigate cellular senescence by reducing both oxidative stress and inflammation.

Over 100 studies registered on ClinicalTrials.gov are currently following up on strong evidence of Metformin’s protective effect against cancer.

Nutraceuticals and NAD+
Beyond cellular senescence, certain critical nutrients and proteins tend to decline as a function of age. Nutraceuticals combat aging by supplementing and replenishing these declining nutrient levels.

NAD+ exists in every cell, participating in every process from DNA repair to creating the energy vital for cellular processes. It’s been shown that NAD+ levels decline as we age.

The Elysium Health Basis supplement aims to elevate NAD+ levels in the body to extend one’s lifespan. Elysium’s clinical study reports that Basis increases NAD+ levels consistently by a sustained 40 percent.

Conclusion
These are just a taste of the tremendous momentum that longevity and aging technology has right now. As artificial intelligence and quantum computing transform how we decode our DNA and how we discover drugs, genetics and pharmaceuticals will become truly personalized.

The next blog in this series will demonstrate how artificial intelligence is converging with genetics and pharmaceuticals to transform how we approach longevity, aging, and vitality.

We are edging closer to a dramatically extended healthspan—where 100 is the new 60. What will you create, where will you explore, and how will you spend your time if you are able to add an additional 40 healthy years to your life?

Join Me
Abundance Digital is my online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#434544 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Beats Pros at Starcraft in Another Triumph for Bots
Tom Simonite | Wired
“DeepMind’s feat is the most complex yet in a long train of contests in which computers have beaten top humans at games. Checkers fell in 1994, chess in 1997, and DeepMind’s earlier bot AlphaGo became the first to beat a champion at the board game Go in 2016. The StarCraft bot is the most powerful AI game player yet; it may also be the least unexpected.”

GENETICS
Complete Axolotl Genome Could Pave the Way Toward Human Tissue Regeneration
George Dvorsky | Gizmodo
“Now that researchers have a near-complete axolotl genome—the new assembly still requires a bit of fine-tuning (more on that in a bit)—they, along with others, can now go about the work of identifying the genes responsible for axolotl tissue regeneration.”

FUTURE
We Analyzed 16,625 Papers to Figure Out Where AI Is Headed Next
Karen Hao | MIT Technology Review
“…though deep learning has singlehandedly thrust AI into the public eye, it represents just a small blip in the history of humanity’s quest to replicate our own intelligence. It’s been at the forefront of that effort for less than 10 years. When you zoom out on the whole history of the field, it’s easy to realize that it could soon be on its way out.”

COMPUTING
Apple’s Finger-Controller Patent Is a Glimpse at Mixed Reality’s Future
Mark Sullivan | Fast Company
“[Apple’s] engineers are now looking past the phone touchscreen toward mixed reality, where the company’s next great UX will very likely be built. A recent patent application gives some tantalizing clues as to how Apple’s people are thinking about aspects of that challenge.”

GOVERNANCE
How Do You Govern Machines That Can Learn? Policymakers Are Trying to Figure That Out
Steve Lohr | The New York Times
“Regulation is coming. That’s a good thing. Rules of competition and behavior are the foundation of healthy, growing markets. That was the consensus of the policymakers at MIT. But they also agreed that artificial intelligence raises some fresh policy challenges.”

Image Credit: Victoria Shapiro / Shutterstock.com Continue reading

Posted in Human Robots

#434532 How Microrobots Will Fix Our Roads and ...

Swarms of microrobots will scuttle along beneath our roads and pavements, finding and fixing leaky pipes and faulty cables. Thanks to their efforts, we can avoid costly road work that costs billions of dollars each year—not to mention frustrating traffic delays.

That is, if a new project sponsored by the U.K. government is a success. Recent developments in the space seem to point towards a bright future for microrobots.

Microrobots Saving Billions
Each year, around 1.5 million road excavations take place across the U.K. Many are due to leaky pipes and faulty cables that necessitate excavation of road surfaces in order to fix them. The resulting repairs, alongside disruptions to traffic and businesses, are estimated to cost a whopping £6.3 billion ($8 billion).

A consortium of scientists, led by University of Sheffield Professor Kirill Horoshenkov, are planning to use microrobots to negate most of these costs. The group has received a £7.2 million ($9.2 million) grant to develop and build their bots.

According to Horoshenkov, the microrobots will come in two versions. One is an inspection bot, which will navigate along underground infrastructure and examine its condition via sonar. The inspectors will be complemented by worker bots capable of carrying out repairs with cement and adhesives or cleaning out blockages with a high-powered jet. The inspector bots will be around one centimeter long and possibly autonomous, while the worker bots will be slightly larger and steered via remote control.

If successful, it is believed the bots could potentially save the U.K. economy around £5 billion ($6.4 billion) a year.

The U.K. government has set aside a further £19 million ($24 million) for research into robots for hazardous environments, such as nuclear decommissioning, drones for oil pipeline monitoring, and artificial intelligence software to detect the need for repairs on satellites in orbit.

The Lowest-Hanging Fruit
Microrobots like the ones now under development in the U.K. have many potential advantages and use cases. Thanks to their small size they can navigate tight spaces, for example in search and rescue operations, and robot swarm technology would allow them to collaborate to perform many different functions, including in construction projects.

To date, the number of microrobots in use is relatively limited, but that could be about to change, with bots closing in on other types of inspection jobs, which could be considered one of the lowest-hanging fruits.

Engineering firm Rolls-Royce (not the car company, but the one that builds aircraft engines) is looking to use microrobots to inspect some of the up to 25,000 individual parts that make up an engine. The microrobots use the cockroach as a model, and Rolls Royce believes they could save engineers time when performing the maintenance checks that can take over a month per engine.

Even Smaller Successes
Going further down in scale, recent years have seen a string of successes for nanobots. For example, a team of researchers at the Femto-ST Institute have used nanobots to build what is likely the world’s smallest house (if this isn’t a category at Guinness, someone needs to get on the phone with them), which stands a ‘towering’ 0.015 millimeters.

One of the areas where nanobots have shown great promise is in medicine. Several studies have shown how the minute bots are capable of delivering drugs directly into dense biological tissue, which can otherwise be highly challenging to target directly. Such delivery systems have a great potential for improving the treatment of a wide range of ailments and illnesses, including cancer.

There’s no question that the ecosystem of microrobots and nanobots is evolving. While still in their early days, the above successes point to a near-future boom in the bots we may soon refer to as our ‘littlest everyday helpers.’

Image Credit: 5nikolas5 / Shutterstock.com Continue reading

Posted in Human Robots

#434276 Industrial Workers Will Soon Don ...

Sarcos Robotics’ full-body suits will let factory workers lift 90 kilograms without breaking a sweat Continue reading

Posted in Human Robots