Tag Archives: something
#435119 Are These Robots Better Than You at ...
Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.
But warehouses and offices aren’t the only places where robots are lining up next to humans.
Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.
Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.
As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.
Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.
Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.
Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.
Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.
Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.
The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.
Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.
It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.
Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.
In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.
Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.
In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.
On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.
We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.
However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.
Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading
#435098 Coming of Age in the Age of AI: The ...
The first generation to grow up entirely in the 21st century will never remember a time before smartphones or smart assistants. They will likely be the first children to ride in self-driving cars, as well as the first whose healthcare and education could be increasingly turned over to artificially intelligent machines.
Futurists, demographers, and marketers have yet to agree on the specifics of what defines the next wave of humanity to follow Generation Z. That hasn’t stopped some, like Australian futurist Mark McCrindle, from coining the term Generation Alpha, denoting a sort of reboot of society in a fully-realized digital age.
“In the past, the individual had no power, really,” McCrindle told Business Insider. “Now, the individual has great control of their lives through being able to leverage this world. Technology, in a sense, transformed the expectations of our interactions.”
No doubt technology may impart Marvel superhero-like powers to Generation Alpha that even tech-savvy Millennials never envisioned over cups of chai latte. But the powers of machine learning, computer vision, and other disciplines under the broad category of artificial intelligence will shape this yet unformed generation more definitively than any before it.
What will it be like to come of age in the Age of AI?
The AI Doctor Will See You Now
Perhaps no other industry is adopting and using AI as much as healthcare. The term “artificial intelligence” appears in nearly 90,000 publications from biomedical literature and research on the PubMed database.
AI is already transforming healthcare and longevity research. Machines are helping to design drugs faster and detect disease earlier. And AI may soon influence not only how we diagnose and treat illness in children, but perhaps how we choose which children will be born in the first place.
A study published earlier this month in NPJ Digital Medicine by scientists from Weill Cornell Medicine used 12,000 photos of human embryos taken five days after fertilization to train an AI algorithm on how to tell which in vitro fertilized embryo had the best chance of a successful pregnancy based on its quality.
Investigators assigned each embryo a grade based on various aspects of its appearance. A statistical analysis then correlated that grade with the probability of success. The algorithm, dubbed Stork, was able to classify the quality of a new set of images with 97 percent accuracy.
“Our algorithm will help embryologists maximize the chances that their patients will have a single healthy pregnancy,” said Dr. Olivier Elemento, director of the Caryl and Israel Englander Institute for Precision Medicine at Weill Cornell Medicine, in a press release. “The IVF procedure will remain the same, but we’ll be able to improve outcomes by harnessing the power of artificial intelligence.”
Other medical researchers see potential in applying AI to detect possible developmental issues in newborns. Scientists in Europe, working with a Finnish AI startup that creates seizure monitoring technology, have developed a technique for detecting movement patterns that might indicate conditions like cerebral palsy.
Published last month in the journal Acta Pediatrica, the study relied on an algorithm to extract the movements from a newborn, turning it into a simplified “stick figure” that medical experts could use to more easily detect clinically relevant data.
The researchers are continuing to improve the datasets, including using 3D video recordings, and are now developing an AI-based method for determining if a child’s motor maturity aligns with its true age. Meanwhile, a study published in February in Nature Medicine discussed the potential of using AI to diagnose pediatric disease.
AI Gets Classy
After being weaned on algorithms, Generation Alpha will hit the books—about machine learning.
China is famously trying to win the proverbial AI arms race by spending billions on new technologies, with one Chinese city alone pledging nearly $16 billion to build a smart economy based on artificial intelligence.
To reach dominance by its stated goal of 2030, Chinese cities are also incorporating AI education into their school curriculum. Last year, China published its first high school textbook on AI, according to the South China Morning Post. More than 40 schools are participating in a pilot program that involves SenseTime, one of the country’s biggest AI companies.
In the US, where it seems every child has access to their own AI assistant, researchers are just beginning to understand how the ubiquity of intelligent machines will influence the ways children learn and interact with their highly digitized environments.
Sandra Chang-Kredl, associate professor of the department of education at Concordia University, told The Globe and Mail that AI could have detrimental effects on learning creativity or emotional connectedness.
Similar concerns inspired Stefania Druga, a member of the Personal Robots group at the MIT Media Lab (and former Education Teaching Fellow at SU), to study interactions between children and artificial intelligence devices in order to encourage positive interactions.
Toward that goal, Druga created Cognimates, a platform that enables children to program and customize their own smart devices such as Alexa or even a smart, functional robot. The kids can also use Cognimates to train their own AI models or even build a machine learning version of Rock Paper Scissors that gets better over time.
“I believe it’s important to also introduce young people to the concepts of AI and machine learning through hands-on projects so they can make more informed and critical use of these technologies,” Druga wrote in a Medium blog post.
Druga is also the founder of Hackidemia, an international organization that sponsors workshops and labs around the world to introduce kids to emerging technologies at an early age.
“I think we are in an arms race in education with the advancement of technology, and we need to start thinking about AI literacy before patterns of behaviors for children and their families settle in place,” she wrote.
AI Goes Back to School
It also turns out that AI has as much to learn from kids. More and more researchers are interested in understanding how children grasp basic concepts that still elude the most advanced machine minds.
For example, developmental psychologist Alison Gopnik has written and lectured extensively about how studying the minds of children can provide computer scientists clues on how to improve machine learning techniques.
In an interview on Vox, she described that while DeepMind’s AlpahZero was trained to be a chessmaster, it struggles with even the simplest changes in the rules, such as allowing the bishop to move horizontally instead of vertically.
“A human chess player, even a kid, will immediately understand how to transfer that new rule to their playing of the game,” she noted. “Flexibility and generalization are something that even human one-year-olds can do but that the best machine learning systems have a much harder time with.”
Last year, the federal defense agency DARPA announced a new program aimed at improving AI by teaching it “common sense.” One of the chief strategies is to develop systems for “teaching machines through experience, mimicking the way babies grow to understand the world.”
Such an approach is also the basis of a new AI program at MIT called the MIT Quest for Intelligence.
The research leverages cognitive science to understand human intelligence, according to an article on the project in MIT Technology Review, such as exploring how young children visualize the world using their own innate 3D models.
“Children’s play is really serious business,” said Josh Tenenbaum, who leads the Computational Cognitive Science lab at MIT and his head of the new program. “They’re experiments. And that’s what makes humans the smartest learners in the known universe.”
In a world increasingly driven by smart technologies, it’s good to know the next generation will be able to keep up.
Image Credit: phoelixDE / Shutterstock.com Continue reading
#434854 New Lifelike Biomaterial Self-Reproduces ...
Life demands flux.
Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.
What if we could endow cold, static, lifeless robots with the gift of metabolism?
In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.
Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.
The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.
“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.
“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.
Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.
Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?
Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.
Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”
The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.
Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.
DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.
Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.
Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.
This “enabled a general design strategy for the DASH patterns,” they said.
In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.
These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.
Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.
“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.
Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.
In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.
Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.
Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.
The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.
In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.
A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.
DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.
Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.
“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.
“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”
Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading