Tag Archives: something
#435632 DARPA Subterranean Challenge: Tunnel ...
The Tunnel Circuit of the DARPA Subterranean Challenge starts later this week at the NIOSH research mine just outside of Pittsburgh, Pennsylvania. From 15-22 August, 11 teams will send robots into a mine that they've never seen before, with the goal of making maps and locating items. All DARPA SubT events involve tunnels of one sort or another, but in this case, the “Tunnel Circuit” refers to mines as opposed to urban underground areas or natural caves. This month’s challenge is the first of three discrete events leading up to a huge final event in August of 2021.
While the Tunnel Circuit competition will be closed to the public, and media are only allowed access for a single day (which we'll be at, of course), DARPA has provided a substantial amount of information about what teams will be able to expect. We also have details from the SubT Integration Exercise, called STIX, which was a completely closed event that took place back in April. STIX was aimed at giving some teams (and DARPA) a chance to practice in a real tunnel environment.
For more general background on SubT, here are some articles to get you all caught up:
SubT: The Next DARPA Challenge for Robotics
Q&A with DARPA Program Manager Tim Chung
Meet The First Nine Teams
It makes sense to take a closer look at what happened at April's STIX exercise, because it is (probably) very similar to what teams will experience in the upcoming Tunnel Circuit. STIX took place at Edgar Experimental Mine in Colorado, and while no two mines are the same (and many are very, very different), there are enough similarities for STIX to have been a valuable experience for teams. Here's an overview video of the exercise from DARPA:
DARPA has also put together a much more detailed walkthrough of the STIX mine exercise, which gives you a sense of just how vast, complicated, and (frankly) challenging for robots the mine environment is:
So, that's the kind of thing that teams had to deal with back in April. Since the event was an exercise, rather than a competition, DARPA didn't really keep score, and wouldn't comment on the performance of individual teams. We've been trolling YouTube for STIX footage, though, to get a sense of how things went, and we found a few interesting videos.
Here's a nice overview from Team CERBERUS, which used drones plus an ANYmal quadruped:
Team CTU-CRAS also used drones, along with a tracked robot:
Team Robotika was brave enough to post video of a “fatal failure” experienced by its wheeled robot; the poor little bot gets rescued at about 7:00 in case you get worried:
So that was STIX. But what about the Tunnel Circuit competition this week? Here's a course preview video from DARPA:
It sort of looks like the NIOSH mine might be a bit less dusty than the Edgar mine was, but it could also be wetter and muddier. It’s hard to tell, because we’re just getting a few snapshots of what’s probably an enormous area with kilometers of tunnels that the robots will have to explore. But DARPA has promised “constrained passages, sharp turns, large drops/climbs, inclines, steps, ladders, and mud, sand, and/or water.” Combine that with the serious challenge to communications imposed by the mine itself, and robots will have to be both physically capable, and almost entirely autonomous. Which is, of course, exactly what DARPA is looking to test with this challenge.
Lastly, we had a chance to catch up with Tim Chung, Program Manager for the Subterranean Challenge at DARPA, and ask him a few brief questions about STIX and what we have to look forward to this week.
IEEE Spectrum: How did STIX go?
Tim Chung: It was a lot of fun! I think it gave a lot of the teams a great opportunity to really get a taste of what these types of real world environments look like, and also what DARPA has in store for them in the SubT Challenge. STIX I saw as an experiment—a learning experience for all the teams involved (as well as the DARPA team) so that we can continue our calibration.
What do you think teams took away from STIX, and what do you think DARPA took away from STIX?
I think the thing that teams took away was that, when DARPA hosts a challenge, we have very audacious visions for what the art of the possible is. And that's what we want—in my mind, the purpose of a DARPA Grand Challenge is to provide that inspiration of, ‘Holy cow, someone thinks we can do this!’ So I do think the teams walked away with a better understanding of what DARPA's vision is for the capabilities we're seeking in the SubT Challenge, and hopefully walked away with a better understanding of the technical, physical, even maybe mental challenges of doing this in the wild— which will all roll back into how they think about the problem, and how they develop their systems.
This was a collaborative exercise, so the DARPA field team was out there interacting with the other engineers, figuring out what their strengths and weaknesses and needs might be, and even understanding how to handle the robots themselves. That will help [strengthen] connections between these university teams and DARPA going forward. Across the board, I think that collaborative spirit is something we really wish to encourage, and something that the DARPA folks were able to take away.
What do we have to look forward to during the Tunnel Circuit?
The vision here is that the Tunnel Circuit is representative of one of the three subterranean subdomains, along with urban and cave. Characteristics of all of these three subdomains will be mashed together in an epic final course, so that teams will have to face hints of tunnel once again in that final event.
Without giving too much away, the NIOSH mine will be similar to the Edgar mine in that it's a human-made environment that supports mining operations and research. But of course, every site is different, and these differences, I think, will provide good opportunities for the teams to shine.
Again, we'll be visiting the NIOSH mine in Pennsylvania during the Tunnel Circuit and will post as much as we can from there. But if you’re an actual participant in the Subterranean Challenge, please tweet me @BotJunkie so that I can follow and help share live updates.
[ DARPA Subterranean Challenge ] Continue reading
#435628 Soft Exosuit Makes Walking and Running ...
Researchers at Harvard’s Wyss Institute have been testing a flexible, lightweight exosuit that can improve your metabolic efficiency by 4 to 10 percent while walking and running. This is very important because, according to a press release from Harvard, the suit can help you be faster and more efficient, whether you’re “walking at a leisurely pace,” or “running for your life.” Great!
Making humans better at running for their lives is something that we don’t put nearly enough research effort into, I think. The problem may not come up very often, but when it does, it’s super important (because, bears). So, sign me up for anything that we can do to make our desperate flights faster or more efficient—especially if it’s a lightweight, wearable exosuit that’s soft, flexible, and comfortable to wear.
This is the same sort of exosuit that was part of a DARPA program that we wrote about a few years ago, which was designed to make it easier for soldiers to carry heavy loads for long distances.
Photos: Wyss Institute at Harvard University
The system uses two waist-mounted electrical motors connected with cables to thigh straps that run down around your butt. The motors pull on the cables at the same time that your muscles actuate, helping them out and reducing the amount of work that your muscles put in without decreasing the amount of force they exert on your legs. The entire suit (batteries included) weighs 5 kilograms (11 pounds).
In order for the cables to actuate at the right time, the suit tracks your gait with two inertial measurement units (IMUs) on the thighs and one on the waist, and then adjusts its actuation profile accordingly. It works well, too, with measurable increases in performance:
We show that a portable exosuit that assists hip extension can reduce the metabolic rate of treadmill walking at 1.5 meters per second by 9.3 percent and that of running at 2.5 meters per second by 4.0 percent compared with locomotion without the exosuit. These reduction magnitudes are comparable to the effects of taking off 7.4 and 5.7 kilograms during walking and running, respectively, and are in a range that has shown meaningful athletic performance changes.
By increasing your efficiency, you can think of the suit as being able to make you walk or run faster, or farther, or carry a heavier load, all while spending the same amount of energy (or less), which could be just enough to outrun the bear that’s chasing you. Plus, it doesn’t appear to be uncomfortable to wear, and doesn’t require the user to do anything differently, which means that (unlike most robotics things) it’s maybe actually somewhat practical for real-world use—whether you’re indoors or outdoors, or walking or running, or being chased by a bear or not.
Sadly, I have no idea when you might be able to buy one of these things. But the researchers are looking for ways to make the suit even easier to use, while also reducing the weight and making the efficiency increase more pronounced. Harvard’s Conor Walsh says they’re “excited to continue to apply it to a range of applications, including assisting those with gait impairments, industry workers at risk of injury performing physically strenuous tasks, or recreational weekend warriors.” As a weekend warrior who is not entirely sure whether he can outrun a bear, I’m excited for this.
Reducing the metabolic rate of walking and running with a versatile, portable exosuit, by Jinsoo Kim, Giuk Lee, Roman Heimgartner, Dheepak Arumukhom Revi, Nikos Karavas, Danielle Nathanson, Ignacio Galiana, Asa Eckert-Erdheim, Patrick Murphy, David Perry, Nicolas Menard, Dabin Kim Choe, Philippe Malcolm, and Conor J. Walsh from the Wyss Institute for Biologically Inspired Engineering at Harvard University, appears in the current issue of Science. Continue reading
#435621 ANYbotics Introduces Sleek New ANYmal C ...
Quadrupedal robots are making significant advances lately, and just in the past few months we’ve seen Boston Dynamics’ Spot hauling a truck, IIT’s HyQReal pulling a plane, MIT’s MiniCheetah doing backflips, Unitree Robotics’ Laikago towing a van, and Ghost Robotics’ Vision 60 exploring a mine. Robot makers are betting that their four-legged machines will prove useful in a variety of applications in construction, security, delivery, and even at home.
ANYbotics has been working on such applications for years, testing out their ANYmal robot in places where humans typically don’t want to go (like offshore platforms) as well as places where humans really don’t want to go (like sewers), and they have a better idea than most companies what can make quadruped robots successful.
This week, ANYbotics is announcing a completely new quadruped platform, ANYmal C, a major upgrade from the really quite research-y ANYmal B. The new quadruped has been optimized for ruggedness and reliability in industrial environments, with a streamlined body painted a color that lets you know it means business.
ANYmal C’s physical specs are pretty impressive for a production quadruped. It can move at 1 meter per second, manage 20-degree slopes and 45-degree stairs, cross 25-centimeter gaps, and squeeze through passages just 60 centimeters wide. It’s packed with cameras and 3D sensors, including a lidar for 3D mapping and simultaneous localization and mapping (SLAM). All these sensors (along with the vast volume of gait research that’s been done with ANYmal) make this one of the most reliably autonomous quadrupeds out there, with real-time motion planning and obstacle avoidance.
Image: ANYbotics
ANYmal can autonomously attach itself to a cone-shaped docking station to recharge.
ANYmal C is also one of the ruggedest legged robots in existence. The 50-kilogram robot is IP67 rated, meaning that it’s completely impervious to dust and can withstand being submerged in a meter of water for an hour. If it’s submerged for longer than that, you’re absolutely doing something wrong. The robot will run for over 2 hours on battery power, and if that’s not enough endurance, don’t worry, because ANYmal can autonomously impale itself on a weird cone-shaped docking station to recharge.
Photo: ANYbotics
ANYmal C’s sensor payload includes cameras and a lidar for 3D mapping and SLAM.
As far as what ANYmal C is designed to actually do, it’s mostly remote inspection tasks where you need to move around through a relatively complex environment, but where for whatever reason you’d be better off not sending a human. ANYmal C has a sensor payload that gives it lots of visual options, like thermal imaging, and with the ability to handle a 10-kilogram payload, the robot can be adapted to many different environments.
Over the next few months, we’re hoping to see more examples of ANYmal C being deployed to do useful stuff in real-world environments, but for now, we do have a bit more detail from ANYbotics CTO Christian Gehring.
IEEE Spectrum: Can you tell us about the development process for ANYmal C?
Christian Gehring: We tested the previous generation of ANYmal (B) in a broad range of environments over the last few years and gained a lot of insights. Based on our learnings, it became clear that we would have to re-design the robot to meet the requirements of industrial customers in terms of safety, quality, reliability, and lifetime. There were different prototype stages both for the new drives and for single robot assemblies. Apart from electrical tests, we thoroughly tested the thermal control and ingress protection of various subsystems like the depth cameras and actuators.
What can ANYmal C do that the previous version of ANYmal can’t?
ANYmal C was redesigned with a focus on performance increase regarding actuation (new drives), computational power (new hexacore Intel i7 PCs), locomotion and navigation skills, and autonomy (new depth cameras). The new robot additionally features a docking system for autonomous recharging and an inspection payload as an option. The design of ANYmal C is far more integrated than its predecessor, which increases both performance and reliability.
How much of ANYmal C’s development and design was driven by your experience with commercial or industry customers?
Tests (such as the offshore installation with TenneT) and discussions with industry customers were important to get the necessary design input in terms of performance, safety, quality, reliability, and lifetime. Most customers ask for very similar inspection tasks that can be performed with our standard inspection payload and the required software packages. Some are looking for a robot that can also solve some simple manipulation tasks like pushing a button. Overall, most use cases customers have in mind are realistic and achievable, but some are really tough for the robot, like climbing 50° stairs in hot environments of 50°C.
Can you describe how much autonomy you expect ANYmal C to have in industrial or commercial operations?
ANYmal C is primarily developed to perform autonomous routine inspections in industrial environments. This autonomy especially adds value for operations that are difficult to access, as human operation is extremely costly. The robot can naturally also be operated via a remote control and we are working on long-distance remote operation as well.
Do you expect that researchers will be interested in ANYmal C? What research applications could it be useful for?
ANYmal C has been designed to also address the needs of the research community. The robot comes with two powerful hexacore Intel i7 computers and can additionally be equipped with an NVIDIA Jetson Xavier graphics card for learning-based applications. Payload interfaces enable users to easily install and test new sensors. By joining our established ANYmal Research community, researchers get access to simulation tools and software APIs, which boosts their research in various areas like control, machine learning, and navigation.
[ ANYmal C ] Continue reading
#435619 Video Friday: Watch This Robot Dog ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.
[ PLUTO ]
Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.
This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.
[ Paper ]
Thanks Zhifeng!
These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.
[ Paper ] via [ ROAM Lab ]
This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.
During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.
What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.
[ Waymo ]
Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.
We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.
Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.
[ Littlebots ]
The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.
[ Japan Times ]
I’m not sure whether it’s the sound or what, but this thing scares me for some reason.
[ BIRL ]
This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.
[ Buffalo ]
What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.
[ WeRobotics ]
My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.
[ Waymo ]
Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.
[ Flirtey ]
EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.
[ EPFL ]
This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.
[ UC Davis ]
I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.
[ Sphero ]
Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.
Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.
[ Yates ] via [ sUAS News ]
This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?
[ MIT ]
Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.
[ Misty Robotics ]
Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.
[ AI Podcast ]
This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.
Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.
[ CMU RI ]
In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”
Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.
Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.
[ Robots in Depth ] Continue reading