Tag Archives: something

#439053 Bipedal Robots Are Learning To Move With ...

Most humans are bipeds, but even the best of us are really only bipeds until things get tricky. While our legs may be our primary mobility system, there are lots of situations in which we leverage our arms as well, either passively to keep balance or actively when we put out a hand to steady ourselves on a nearby object. And despite how unstable bipedal robots tend to be, using anything besides legs for mobility has been a challenge in both software and hardware, a significant limitation in highly unstructured environments.

Roboticists from TUM in Germany (with support from the German Research Foundation) have recently given their humanoid robot LOLA some major upgrades to make this kind of multi-contact locomotion possible. While it’s still in the early stages, it’s already some of the most human-like bipedal locomotion we’ve seen.

It’s certainly possible for bipedal robots to walk over challenging terrain without using limbs for support, but I’m sure you can think of lots of times where using your arms to assist with your own bipedal mobility was a requirement. It’s not a requirement because your leg strength or coordination or sense of balance is bad, necessarily. It’s just that sometimes, you might find yourself walking across something that’s highly unstable or in a situation where the consequences of a stumble are exceptionally high. And it may not even matter how much sensing you do beforehand, and how careful you are with your footstep planning: there are limits to how much you can know about your environment beforehand, and that can result in having a really bad time of it. This is why using multi-contact locomotion, whether it’s planned in advance or not, is a useful skill for humans, and should be for robots, too.

As the video notes (and props for being explicit up front about it), this isn’t yet fully autonomous behavior, with foot positions and arm contact points set by hand in advance. But it’s not much of a stretch to see how everything could be done autonomously, since one of the really hard parts (using multiple contact points to dynamically balance a moving robot) is being done onboard and in real time.

Getting LOLA to be able to do this required a major overhaul in hardware as well as software. And Philipp Seiwald, who works with LOLA at TUM, was able to tell us more about it.

IEEE Spectrum: Can you summarize the changes to LOLA’s hardware that are required for multi-contact locomotion?

Philipp Seiwald: The original version of LOLA has been designed for fast biped walking. Although it had two arms, they were not meant to get into contact with the environment but rather to compensate for the dynamic effects of the feet during fast walking. Also, the torso had a relatively simple design that was fine for its original purpose; however, it was not conceived to withstand the high loads coming from the hands during multi-contact maneuvers. Thus, we redesigned the complete upper body of LOLA from scratch. Starting from the pelvis, the strength and stiffness of the torso have been increased. We used the finite element method to optimize critical parts to obtain maximum strength at minimum weight. Moreover, we added additional degrees of freedom to the arms to increase the hands' reachable workspace. The kinematic topology of the arms, i.e., the arrangement of joints and link lengths, has been obtained from an optimization that takes typical multi-contact scenarios into account.

Why is this an important problem for bipedal humanoid robots?

Maintaining balance during locomotion can be considered the primary goal of legged robots. Naturally, this task is more challenging for bipeds when compared to robots with four or even more legs. Although current high-end prototypes show impressive progress, humanoid robots still do not have the robustness and versatility they need for most real-world applications. With our research, we try to contribute to this field and help to push the limits further. Recently, we showed our latest work on walking over uneven terrain without multi-contact support. Although the robustness is already high, there still exist scenarios, such as walking on loose objects, where the robot's stabilization fails when using only foot contacts. The use of additional hand-environment support during this (comparatively) fast walking allows a further significant increase in robustness, i.e., the robot's capability to compensate disturbances, modeling errors, or inaccurate sensor input. Besides stabilization on uneven terrain, multi-contact locomotion also enables more complex motions, e.g., stepping over a tall obstacle or toe-only contacts, as shown in our latest multi-contact video.

How can LOLA decide whether a surface is suitable for multi-contact locomotion?

LOLA’s visual perception system is currently developed by our project partners from the Chair for Computer Aided Medical Procedures & Augmented Reality at the TUM. This system relies on a novel semantic Simultaneous Localization and Mapping (SLAM) pipeline that can robustly extract the scene's semantic components (like floor, walls, and objects therein) by merging multiple observations from different viewpoints and by inferring therefrom the underlying scene graph. This provides a reliable estimate of which scene parts can be used to support the locomotion, based on the assumption that certain structural elements such as walls are fixed, while chairs, for example, are not.

Also, the team plans to develop a specific dataset with annotations further describing the attributes of the object (such as roughness of the surface or its softness) and that will be used to master multi-contact locomotion in even more complex scenes. As of today, the vision and navigation system is not finished yet; thus, in our latest video, we used pre-defined footholds and contact points for the hands. However, within our collaboration, we are working towards a fully integrated and autonomous system.

Is LOLA capable of both proactive and reactive multi-contact locomotion?

The software framework of LOLA has a hierarchical structure. On the highest level, the vision system generates an environment model and estimates the 6D-pose of the robot in the scene. The walking pattern generator then uses this information to plan a dynamically feasible future motion that will lead LOLA to a target position defined by the user. On a lower level, the stabilization module modifies this plan to compensate for model errors or any kind of disturbance and keep overall balance. So our approach currently focuses on proactive multi-contact locomotion. However, we also plan to work on a more reactive behavior such that additional hand support can also be triggered by an unexpected disturbance instead of being planned in advance.

What are some examples of unique capabilities that you are working towards with LOLA?

One of the main goals for the research with LOLA remains fast, autonomous, and robust locomotion on complex, uneven terrain. We aim to reach a walking speed similar to humans. Currently, LOLA can do multi-contact locomotion and cross uneven terrain at a speed of 1.8 km/h, which is comparably fast for a biped robot but still slow for a human. On flat ground, LOLA's high-end hardware allows it to walk at a relatively high maximum speed of 3.38 km/h.

Fully autonomous multi-contact locomotion for a life-sized humanoid robot is a tough task. As algorithms get more complex, computation time increases, which often results in offline motion planning methods. For LOLA, we restrict ourselves to gaited multi-contact locomotion, which means that we try to preserve the core characteristics of bipedal gait and use the arms only for assistance. This allows us to use simplified models of the robot which lead to very efficient algorithms running in real-time and fully onboard.

A long-term scientific goal with LOLA is to understand essential components and control policies of human walking. LOLA's leg kinematics is relatively similar to the human body. Together with scientists from kinesiology, we try to identify similarities and differences between observed human walking and LOLA’s “engineered” walking gait. We hope this research leads, on the one hand, to new ideas for the control of bipeds, and on the other hand, shows via experiments on bipeds if biomechanical models for the human gait are correctly understood. For a comparison of control policies on uneven terrain, LOLA must be able to walk at comparable speeds, which also motivates our research on fast and robust walking.

While it makes sense why the researchers are using LOLA’s arms primarily to assist with a conventional biped gait, looking ahead a bit it’s interesting to think about how robots that we typically consider to be bipeds could potentially leverage their limbs for mobility in decidedly non-human ways.

We’re used to legged robots being one particular morphology, I guess because associating them with either humans or dogs or whatever is just a comfortable way to do it, but there’s no particular reason why a robot with four limbs has to choose between being a quadruped and being a biped with arms, or some hybrid between the two, depending on what its task is. The research being done with LOLA could be a step in that direction, and maybe a hand on the wall in that direction, too. Continue reading

Posted in Human Robots

#439042 How Scientists Used Ultrasound to Read ...

Thanks to neural implants, mind reading is no longer science fiction.

As I’m writing this sentence, a tiny chip with arrays of electrodes could sit on my brain, listening in on the crackling of my neurons firing as my hands dance across the keyboard. Sophisticated algorithms could then decode these electrical signals in real time. My brain’s inner language to plan and move my fingers could then be used to guide a robotic hand to do the same. Mind-to-machine control, voilà!

Yet as the name implies, even the most advanced neural implant has a problem: it’s an implant. For electrodes to reliably read the brain’s electrical chatter, they need to pierce through the its protective membrane and into brain tissue. Danger of infection aside, over time, damage accumulates around the electrodes, distorting their signals or even rendering them unusable.

Now, researchers from Caltech have paved a way to read the brain without any physical contact. Key to their device is a relatively new superstar in neuroscience: functional ultrasound, which uses sound waves to capture activity in the brain.

In monkeys, the technology could reliably predict their eye movement and hand gestures after just a single trial—without the usual lengthy training process needed to decode a movement. If adopted by humans, the new mind-reading tech represents a triple triumph: it requires minimal surgery and minimal learning, but yields maximal resolution for brain decoding. For people who are paralyzed, it could be a paradigm shift in how they control their prosthetics.

“We pushed the limits of ultrasound neuroimaging and were thrilled that it could predict movement,” said study author Dr. Sumner Norman.

To Dr. Krishna Shenoy at Stanford, who was not involved, the study will finally put ultrasound “on the map as a brain-machine interface technique. Adding to this toolkit is spectacular,” he said.

Breaking the Sound Barrier
Using sound to decode brain activity might seem preposterous, but ultrasound has had quite the run in medicine. You’ve probably heard of its most common use: taking photos of a fetus in pregnancy. The technique uses a transducer, which emits ultrasound pulses into the body and finds boundaries in tissue structure by analyzing the sound waves that bounce back.

Roughly a decade ago, neuroscientists realized they could adapt the tech for brain scanning. Rather than directly measuring the brain’s electrical chatter, it looks at a proxy—blood flow. When certain brain regions or circuits are active, the brain requires much more energy, which is provided by increased blood flow. In this way, functional ultrasound works similarly to functional MRI, but at a far higher resolution—roughly ten times, the authors said. Plus, people don’t have to lie very still in an expensive, claustrophobic magnet.

“A key question in this work was: If we have a technique like functional ultrasound that gives us high-resolution images of the brain’s blood flow dynamics in space and over time, is there enough information from that imaging to decode something useful about behavior?” said study author Dr. Mikhail Shapiro.

There’s plenty of reasons for doubt. As the new kid on the block, functional ultrasound has some known drawbacks. A major one: it gives a far less direct signal than electrodes. Previous studies show that, with multiple measurements, it can provide a rough picture of brain activity. But is that enough detail to guide a robotic prosthesis?

One-Trial Wonder
The new study put functional ultrasound to the ultimate test: could it reliably detect movement intention in monkeys? Because their brains are the most similar to ours, rhesus macaque monkeys are often the critical step before a brain-machine interface technology is adapted for humans.

The team first inserted small ultrasound transducers into the skulls of two rhesus monkeys. While it sounds intense, the surgery doesn’t penetrate the brain or its protective membrane; it’s only on the skull. Compared to electrodes, this means the brain itself isn’t physically harmed.

The device is linked to a computer, which controls the direction of sound waves and captures signals from the brain. For this study, the team aimed the pulses at the posterior parietal cortex, a part of the “motor” aspect of the brain, which plans movement. If right now you’re thinking about scrolling down this page, that’s the brain region already activated, before your fingers actually perform the movement.

Then came the tests. The first looked at eye movements—something pretty necessary before planning actual body movements without tripping all over the place. Here, the monkeys learned to focus on a central dot on a computer screen. A second dot, either left or right, then flashed. The monkeys’ task was to flicker their eyes to the most recent dot. It’s something that seems easy for us, but requires sophisticated brain computation.

The second task was more straightforward. Rather than just moving their eyes to the second target dot, the monkeys learned to grab and manipulate a joystick to move a cursor to that target.

Using brain imaging to decode the mind and control movement. Image Credit: S. Norman, Caltech
As the monkeys learned, so did the device. Ultrasound data capturing brain activity was fed into a sophisticated machine learning algorithm to guess the monkeys’ intentions. Here’s the kicker: once trained, using data from just a single trial, the algorithm was able to correctly predict the monkeys’ actual eye movement—whether left or right—with roughly 78 percent accuracy. The accuracy for correctly maneuvering the joystick was even higher, at nearly 90 percent.

That’s crazy accurate, and very much needed for a mind-controlled prosthetic. If you’re using a mind-controlled cursor or limb, the last thing you’d want is to have to imagine the movement multiple times before you actually click the web button, grab the door handle, or move your robotic leg.

Even more impressive is the resolution. Sound waves seem omnipresent, but with focused ultrasound, it’s possible to measure brain activity at a resolution of 100 microns—roughly 10 neurons in the brain.

A Cyborg Future?
Before you start worrying about scientists blasting your brain with sound waves to hack your mind, don’t worry. The new tech still requires skull surgery, meaning that a small chunk of skull needs to be removed. However, the brain itself is spared. This means that compared to electrodes, ultrasound could offer less damage and potentially a far longer mind reading than anything currently possible.

There are downsides. Focused ultrasound is far younger than any electrode-based neural implants, and can’t yet reliably decode 360-degree movement or fine finger movements. For now, the tech requires a wire to link the device to a computer, which is off-putting to many people and will prevent widespread adoption. Add to that the inherent downside of focused ultrasound, which lags behind electrical recordings by roughly two seconds.

All that aside, however, the tech is just tiptoeing into a future where minds and machines seamlessly connect. Ultrasound can penetrate the skull, though not yet at the resolution needed for imaging and decoding brain activity. The team is already working with human volunteers with traumatic brain injuries, who had to have a piece of their skulls removed, to see how well ultrasound works for reading their minds.

“What’s most exciting is that functional ultrasound is a young technique with huge potential. This is just our first step in bringing high performance, less invasive brain-machine interface to more people,” said Norman.

Image Credit: Free-Photos / Pixabay Continue reading

Posted in Human Robots

#439023 In ‘Klara and the Sun,’ We Glimpse ...

In a store in the center of an unnamed city, humanoid robots are displayed alongside housewares and magazines. They watch the fast-moving world outside the window, anxiously awaiting the arrival of customers who might buy them and take them home. Among them is Klara, a particularly astute robot who loves the sun and wants to learn as much as possible about humans and the world they live in.

So begins Kazuo Ishiguro’s new novel Klara and the Sun, published earlier this month. The book, told from Klara’s perspective, portrays an eerie future society in which intelligent machines and other advanced technologies have been integrated into daily life, but not everyone is happy about it.

Technological unemployment, the progress of artificial intelligence, inequality, the safety and ethics of gene editing, increasing loneliness and isolation—all of which we’re grappling with today—show up in Ishiguro’s world. It’s like he hit a fast-forward button, mirroring back to us how things might play out if we don’t approach these technologies with caution and foresight.

The wealthy genetically edit or “lift” their children to set them up for success, while the poor have to make do with the regular old brains and bodies bequeathed them by evolution. Lifted and unlifted kids generally don’t mix, and this is just one of many sinister delineations between a new breed of haves and have-nots.

There’s anger about robots’ steady infiltration into everyday life, and questions about how similar their rights should be to those of humans. “First they take the jobs. Then they take the seats at the theater?” one woman fumes.

References to “changes” and “substitutions” allude to an economy where automation has eliminated millions of jobs. While “post-employed” people squat in abandoned buildings and fringe communities arm themselves in preparation for conflict, those whose livelihoods haven’t been destroyed can afford to have live-in housekeepers and buy Artificial Friends (or AFs) for their lonely children.

“The old traditional model that we still live with now—where most of us can get some kind of paid work in exchange for our services or the goods we make—has broken down,” Ishiguro said in a podcast discussion of the novel. “We’re not talking just about the difference between rich and poor getting bigger. We’re talking about a gap appearing between people who participate in society in an obvious way and people who do not.”

He has a point; as much as techno-optimists claim that the economic changes brought by automation and AI will give us all more free time, let us work less, and devote time to our passion projects, how would that actually play out? What would millions of “post-employed” people receiving basic income actually do with their time and energy?

In the novel, we don’t get much of a glimpse of this side of the equation, but we do see how the wealthy live. After a long wait, just as the store manager seems ready to give up on selling her, Klara is chosen by a 14-year-old girl named Josie, the daughter of a woman who wears “high-rank clothes” and lives in a large, sunny home outside the city. Cheerful and kind, Josie suffers from an unspecified illness that periodically flares up and leaves her confined to her bed for days at a time.

Her life seems somewhat bleak, the need for an AF clear. In this future world, the children of the wealthy no longer go to school together, instead studying alone at home on their digital devices. “Interaction meetings” are set up for them to learn to socialize, their parents carefully eavesdropping from the next room and trying not to intervene when there’s conflict or hurt feelings.

Klara does her best to be a friend, aide, and confidante to Josie while continuing to learn about the world around her and decode the mysteries of human behavior. We surmise that she was programmed with a basic ability to understand emotions, which evolves along with her other types of intelligence. “I believe I have many feelings. The more I observe, the more feelings become available to me,” she explains to one character.

Ishiguro does an excellent job of representing Klara’s mind: a blend of pre-determined programming, observation, and continuous learning. Her narration has qualities both robotic and human; we can tell when something has been programmed in—she “Gives Privacy” to the humans around her when that’s appropriate, for example—and when she’s figured something out for herself.

But the author maintains some mystery around Klara’s inner emotional life. “Does she actually understand human emotions, or is she just observing human emotions and simulating them within herself?” he said. “I suppose the question comes back to, what are our emotions as human beings? What do they amount to?”

Klara is particularly attuned to human loneliness, since she essentially was made to help prevent it. It is, in her view, peoples’ biggest fear, and something they’ll go to great lengths to avoid, yet can never fully escape. “Perhaps all humans are lonely,” she says.

Warding off loneliness through technology isn’t a futuristic idea, it’s something we’ve been doing for a long time, with the technologies at hand growing more and more sophisticated. Products like AFs already exist. There’s XiaoIce, a chatbot that uses “sentiment analysis” to keep its 660 million users engaged, and Azuma Hikari, a character-based AI designed to “bring comfort” to users whose lives lack emotional connection with other humans.

The mere existence of these tools would be sinister if it wasn’t for their widespread adoption; when millions of people use AIs to fill a void in their lives, it raises deeper questions about our ability to connect with each other and whether technology is building it up or tearing it down.

This isn’t the only big question the novel tackles. An overarching theme is one we’ve been increasingly contemplating as computers start to acquire more complex capabilities, like the beginnings of creativity or emotional awareness: What is it that truly makes us human?

“Do you believe in the human heart?” one character asks. “I don’t mean simply the organ, obviously. I’m speaking in the poetic sense. The human heart. Do you think there is such a thing? Something that makes each of us special and individual?”

The alternative, at least in the story, is that people don’t have a unique essence, but rather we’re all a blend of traits and personalities that can be reduced to strings of code. Our understanding of the brain is still elementary, but at some level, doesn’t all human experience boil down to the firing of billions of neurons between our ears? Will we one day—in a future beyond that painted by Ishiguro, but certainly foreshadowed by it—be able to “decode” our humanity to the point that there’s nothing mysterious left about it? “A human heart is bound to be complex,” Klara says. “But it must be limited.”

Whether or not you agree, Klara and the Sun is worth the read. It’s both a marvelous, engaging story about what it means to love and be human, and a prescient warning to approach technological change with caution and nuance. We’re already living in a world where AI keeps us company, influences our behavior, and is wreaking various forms of havoc. Ishiguro’s novel is a snapshot of one of our possible futures, told through the eyes of a robot who keeps you rooting for her to the end.

Image Credit: Marion Wellmann from Pixabay Continue reading

Posted in Human Robots

#439012 Video Friday: Man-Machine Synergy ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Man-Machine Synergy Effectors, Inc. is a Japanese company working on an absolutely massive “human machine synergistic effect device,” which is a huge robot controlled by a nearby human using a haptic rig.

From the look of things, the next generation will be able to move around. Whoa.

[ MMSE ]

This method of loading and unloading AMRs without having them ever stop moving is so obvious that there must be some equally obvious reason why I've never seen it done in practice.

The LoadRunner is able to transport and sort parcels weighing up to 30 kilograms. This makes it the perfect luggage carrier for airports. These AI-driven go-carts can also work in concert as larger collectives to carry large, heavy and bulky objects. Every LoadRunner can also haul up to four passive trailers. Powered by four electric motors, the LoadRunner sharply brakes at just the right moment right in front of its destination and the payload slides from the robot onto the delivery platform.

[ Fraunhofer ] via [ Gizmodo ]

Ayato Kanada at Kyushu University wrote in to share this clever “dislocatable joint,” a way of combining continuum and rigid robots.

[ Paper ]

Thanks Ayato!

The DodgeDrone challenge revisits the popular dodgeball game in the context of autonomous drones. Specifically, participants will have to code navigation policies to fly drones between waypoints while avoiding dynamic obstacles. Drones are fast but fragile systems: as soon as something hits them, they will crash! Since objects will move towards the drone with different speeds and acceleration, smart algorithms are required to avoid them!

This could totally happen in real life, and we need to be prepared for it!

[ DodgeDrone Challenge ]

In addition to winning the Best Student Design Competition CREATIVITY Award at HRI 2021, this paper would also have won the Best Paper Title award, if that award existed.

[ Paper ]

Robots are traditionally bound by a fixed morphology during their operational lifetime, which is limited to adapting only their control strategies. Here we present the first quadrupedal robot that can morphologically adapt to different environmental conditions in outdoor, unstructured environments.

We show that the robot exploits its training to effectively transition between different morphological configurations, exhibiting substantial performance improvements over a non-adaptive approach. The demonstrated benefits of real-world morphological adaptation demonstrate the potential for a new embodied way of incorporating adaptation into future robotic designs.

[ Nature ]

A drone video shot in a Minneapolis bowling alley was hailed as an instant classic. One Hollywood veteran said it “adds to the language and vocabulary of cinema.” One IEEE Spectrum editor said “hey that's pretty cool.”

[ Bryant Lake Bowl ]

It doesn't take a robot to convince me to buy candy, but I think if I buy candy from Relay it's a business expense, right?

[ RIS ]

DARPA is making progress on its AI dogfighting program, with physical flight tests expected this year.

[ DARPA ACE ]

Unitree Robotics has realized that the Empire needs to be overthrown!

[ Unitree ]

Windhover Labs, an emerging leader in open and reliable flight software and hardware, announces the upcoming availability of its first hardware product, a low cost modular flight computer for commercial drones and small satellites.

[ Windhover ]

As robots and autonomous systems are poised to become part of our everyday lives, the University of Michigan and Ford are opening a one-of-a-kind facility where they’ll develop robots and roboticists that help make lives better, keep people safer and build a more equitable society.

[ U Michigan ]

The adaptive robot Rizon combined with a new hybrid electrostatic and gecko-inspired gripping pad developed by Stanford BDML can manipulate bulky, non-smooth items in the most effort-saving way, which broadens the applications in retail and household environments.

[ Flexiv ]

Thanks Yunfan!

I don't know why anyone would want things to get MORE icy, but if you do for some reason, you can make it happen with a Husky.

Is winter over yet?

[ Clearpath ]

Skip ahead to about 1:20 to see a pair of Gita robots following a Spot following a human like a chain of lil’ robot duckings.

[ PFF ]

Here are a couple of retro robotics videos, one showing teleoperated humanoids from 2000, and the other showing a robotic guide dog from 1976 (!)

[ Tachi Lab ]

Thanks Fan!

If you missed Chad Jenkins' talk “That Ain’t Right: AI Mistakes and Black Lives” last time, here's another opportunity to watch from Robotics Today, and it includes a top notch panel discussion at the end.

[ Robotics Today ]

Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over numerous R&D programs that I have led at NREC in the past 25 years.

[ CMU ] Continue reading

Posted in Human Robots

#439004 Video Friday: A Walking, Wheeling ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

This is a pretty terrible video, I think because it was harvested from WeChat, which is where Tencent decided to premiere its new quadruped robot.

Not bad, right? Its name is Max, it has a top speed of 25 kph thanks to its elbow wheels, and we know almost nothing else about it.

[ Tencent ]

Thanks Fan!

Can't bring yourself to mask-shame others? Build a robot to do it for you instead!

[ GitHub ]

Researchers at Georgia Tech have recently developed an entirely soft, long-stroke electromagnetic actuator using liquid metal, compliant magnetic composites, and silicone polymers. The robot was inspired by the motion of the Xenia coral, which pulses its polyps to circulate oxygen under water to promote photosynthesis.

In this work, power applied to soft coils generates an electromagnetic field, which causes the internal compliant magnet to move upward. This forces the squishy silicone linkages to convert linear to the rotational motion with an arclength of up to 42 mm with a bandwidth up to 30 Hz. This highly deformable, fast, and long-stroke actuator topology can be utilized for a variety of applications from biomimicry to fully-soft grasping to wearables applications.

[ Paper ] via [ Georgia Tech ]

Thanks Noah!

Jueying Mini Lite may look a little like a Boston Dynamics Spot, but according to DeepRobotics, its coloring is based on Bruce Lee's Kung Fu clothes.

[ DeepRobotics ]

Henrique writes, “I would like to share with you the supplementary video of our recent work accepted to ICRA 2021. The video features a quadruped and a full-size humanoid performing dynamic jumps, after a brief animated intro of what direct transcription is. Me and my colleagues have put a lot of hard work into this, and I am very proud of the results.”

Making big robots jump is definitely something to be proud of!

[ SLMC Edinburgh ]

Thanks Henrique!

The finals of the Powered Exoskeleton Race for Cybathlon Global 2020.

[ Cybathlon ]

Thanks Fan!

It's nice that every once in a while, the world can get excited about science and robots.

[ NASA ]

Playing the Imperial March over footage of an army of black quadrupeds may not be sending quite the right message.

[ Unitree ]

Kod*lab PhD students Abriana Stewart-Height, Diego Caporale and Wei-Hsi Chen, with former Kod*lab student Garrett Wenger were on set in the summer of 2019 to operate RHex for the filming of Lapsis, a first feature film by director and screenwriter Noah Hutton.

[ Kod*lab ]

In class 2.008, Design and Manufacturing II, mechanical engineering students at MIT learn the fundamental principles of manufacturing at scale by designing and producing their own yo-yos. Instructors stress the importance of sustainable practices in the global supply chain.

[ MIT ]

A short history of robotics, from ABB.

[ ABB ]

In this paper, we propose a whole-body planning framework that unifies dynamic locomotion and manipulation tasks by formulating a single multi-contact optimal control problem. This is demonstrated in a set of real hardware experiments done in free-motion, such as base or end-effector pose tracking, and while pushing/pulling a heavy resistive door. Robustness against model mismatches and external disturbances is also verified during these test cases.

[ Paper ]

This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking.

Extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.

[ MIT ]

With our SaaS solution, we enable robots to inspect industrial facilities. One of the robots our software supports, is the Boston Dynamics Spot robot. In this video we demonstrate how autonomous industrial inspection with the Boston Dynamics Spot Robot is performed with our teach and repeat solution.

[ Energy Robotics ]

In this week’s episode of Tech on Deck, learn about our first technology demonstration sent to Station: The Robotic Refueling Mission. This tech demo helped us develop the tools and techniques needed to robotically refuel a satellite in space, an important capability for space exploration.

[ NASA ]

At Covariant we are committed to research and development that will bring AI Robotics to the real world. As a part of this, we believe it's important to educate individuals on how these exciting innovations will make a positive, fundamental and global impact for years to come. In this presentation, our co-founder Pieter Abbeel breaks down his thoughts on the current state of play for AI robotics.

[ Covariant ]

How do you fly a helicopter on Mars? It takes Ingenuity and Perseverance. During this technology demo, Farah Alibay and Tim Canham will get into the details of how these craft will manage this incredible task.

[ NASA ]

Complex real-world environments continue to present significant challenges for fielding robotic teams, which often face expansive spatial scales, difficult and dynamic terrain, degraded environmental conditions, and severe communication constraints. Breakthrough technologies call for integrated solutions across autonomy, perception, networking, mobility, and human teaming thrusts. As such, the DARPA OFFSET program and the DARPA Subterranean Challenge seek novel approaches and new insights for discovering and demonstrating these innovative technologies, to help close critical gaps for robotic operations in complex urban and underground environments.

[ UPenn ] Continue reading

Posted in Human Robots