Tag Archives: solution
#434701 3 Practical Solutions to Offset ...
In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.
The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.
As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?
Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.
First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.
Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.
Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.
At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.
Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.
Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.
Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.
Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.
Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.
Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.
Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).
The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?
Figure 2. Labor laws have historically adjusted as technology and society progressed
Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.
A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.
Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.
Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.
We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.
However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.
Note: The full paper this article is based on is available here.
Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading
#434685 How Tech Will Let You Learn Anything, ...
Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.
Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.
And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.
Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.
With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.
Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.
Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.
Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.
In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.
We’ll discuss:
Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning
Let’s dive in.
Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.
Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.
To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.
Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.
Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.
To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.
Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.
Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.
But while both mobile apps have recruited initial piloting populations, the key to success is scale.
Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.
Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.
While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.
Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.
And what better to scale these benefits than AI and immersive virtual environments?
In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.
As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.
Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.
Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.
Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.
As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.
By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.
Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.
As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.
Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.
Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.
In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.
But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.
And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.
Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.
When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.
But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.
VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.
Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.
Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.
As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.
Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.
Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.
Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.
As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading
#434559 Can AI Tell the Difference Between a ...
Scarcely a day goes by without another headline about neural networks: some new task that deep learning algorithms can excel at, approaching or even surpassing human competence. As the application of this approach to computer vision has continued to improve, with algorithms capable of specialized recognition tasks like those found in medicine, the software is getting closer to widespread commercial use—for example, in self-driving cars. Our ability to recognize patterns is a huge part of human intelligence: if this can be done faster by machines, the consequences will be profound.
Yet, as ever with algorithms, there are deep concerns about their reliability, especially when we don’t know precisely how they work. State-of-the-art neural networks will confidently—and incorrectly—classify images that look like television static or abstract art as real-world objects like school-buses or armadillos. Specific algorithms could be targeted by “adversarial examples,” where adding an imperceptible amount of noise to an image can cause an algorithm to completely mistake one object for another. Machine learning experts enjoy constructing these images to trick advanced software, but if a self-driving car could be fooled by a few stickers, it might not be so fun for the passengers.
These difficulties are hard to smooth out in large part because we don’t have a great intuition for how these neural networks “see” and “recognize” objects. The main insight analyzing a trained network itself can give us is a series of statistical weights, associating certain groups of points with certain objects: this can be very difficult to interpret.
Now, new research from UCLA, published in the journal PLOS Computational Biology, is testing neural networks to understand the limits of their vision and the differences between computer vision and human vision. Nicholas Baker, Hongjing Lu, and Philip J. Kellman of UCLA, alongside Gennady Erlikhman of the University of Nevada, tested a deep convolutional neural network called VGG-19. This is state-of-the-art technology that is already outperforming humans on standardized tests like the ImageNet Large Scale Visual Recognition Challenge.
They found that, while humans tend to classify objects based on their overall (global) shape, deep neural networks are far more sensitive to the textures of objects, including local color gradients and the distribution of points on the object. This result helps explain why neural networks in image recognition make mistakes that no human ever would—and could allow for better designs in the future.
In the first experiment, a neural network was trained to sort images into 1 of 1,000 different categories. It was then presented with silhouettes of these images: all of the local information was lost, while only the outline of the object remained. Ordinarily, the trained neural net was capable of recognizing these objects, assigning more than 90% probability to the correct classification. Studying silhouettes, this dropped to 10%. While human observers could nearly always produce correct shape labels, the neural networks appeared almost insensitive to the overall shape of the images. On average, the correct object was ranked as the 209th most likely solution by the neural network, even though the overall shapes were an exact match.
A particularly striking example arose when they tried to get the neural networks to classify glass figurines of objects they could already recognize. While you or I might find it easy to identify a glass model of an otter or a polar bear, the neural network classified them as “oxygen mask” and “can opener” respectively. By presenting glass figurines, where the texture information that neural networks relied on for classifying objects is lost, the neural network was unable to recognize the objects by shape alone. The neural network was similarly hopeless at classifying objects based on drawings of their outline.
If you got one of these right, you’re better than state-of-the-art image recognition software. Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
When the neural network was explicitly trained to recognize object silhouettes—given no information in the training data aside from the object outlines—the researchers found that slight distortions or “ripples” to the contour of the image were again enough to fool the AI, while humans paid them no mind.
The fact that neural networks seem to be insensitive to the overall shape of an object—relying instead on statistical similarities between local distributions of points—suggests a further experiment. What if you scrambled the images so that the overall shape was lost but local features were preserved? It turns out that the neural networks are far better and faster at recognizing scrambled versions of objects than outlines, even when humans struggle. Students could classify only 37% of the scrambled objects, while the neural network succeeded 83% of the time.
Humans vastly outperform machines at classifying object (a) as a bear, while the machine learning algorithm has few problems classifying the bear in figure (b). Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
“This study shows these systems get the right answer in the images they were trained on without considering shape,” Kellman said. “For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn’t seem to be in these deep learning systems at all.”
Naively, one might expect that—as the many layers of a neural network are modeled on connections between neurons in the brain and resemble the visual cortex specifically—the way computer vision operates must necessarily be similar to human vision. But this kind of research shows that, while the fundamental architecture might resemble that of the human brain, the resulting “mind” operates very differently.
Researchers can, increasingly, observe how the “neurons” in neural networks light up when exposed to stimuli and compare it to how biological systems respond to the same stimuli. Perhaps someday it might be possible to use these comparisons to understand how neural networks are “thinking” and how those responses differ from humans.
But, as yet, it takes a more experimental psychology to probe how neural networks and artificial intelligence algorithms perceive the world. The tests employed against the neural network are closer to how scientists might try to understand the senses of an animal or the developing brain of a young child rather than a piece of software.
By combining this experimental psychology with new neural network designs or error-correction techniques, it may be possible to make them even more reliable. Yet this research illustrates just how much we still don’t understand about the algorithms we’re creating and using: how they tick, how they make decisions, and how they’re different from us. As they play an ever-greater role in society, understanding the psychology of neural networks will be crucial if we want to use them wisely and effectively—and not end up missing the woods for the trees.
Image Credit: Irvan Pratama / Shutterstock.com Continue reading
#433950 How the Spatial Web Will Transform Every ...
What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or is our future workplace completely virtualized, whereby we hang out at home in our PJs while walking about our virtual corporate headquarters?
This blog will look at the future of work during the age of Web 3.0… Examining scenarios in which AI, VR, and the spatial web converge to transform every element of our careers, from training to execution to free time.
Three weeks ago, I explored the vast implications of Web 3.0 on news, media, smart advertising, and personalized retail. And to offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.
A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.
But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments.
Suddenly, all our information will be manipulated, stored, understood, and experienced in spatial ways.
In this third installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for:
Professional Training
Delocalized Business and the Virtual Workplace
Smart Permissions and Data Security
Let’s dive in.
Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market.
Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.
In September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.
In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mock-ups into CAD-designed virtual replicas.
But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.
And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.
Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.
When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.
But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands.
VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.
Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.
Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.
As tomorrow’s career model shifts from a “one-and-done graduate degree” to lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.
But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.
Rise of the Virtual Workplace and Digital Data Integrity
In addition to enabling an annual $52 billion virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.
Too good to be true? Check out an incredible publicly listed company called eXp Realty.
Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading.
But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.
And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial.
What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.
In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.
Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.
Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.
Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.
This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.
But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.
As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.
Imaging showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.
You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.
With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.
Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.
Life-like virtual modules are already unlocking countless professional training camps, modifiable in real-time and easily updated.
Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading.
And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.
Welcome to the Spatial Web workplace.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: MONOPOLY919 / Shutterstock.com Continue reading