Tag Archives: software
#435726 This Is the Most Powerful Robot Arm Ever ...
Last month, engineers at NASA’s Jet Propulsion Laboratory wrapped up the installation of the Mars 2020 rover’s 2.1-meter-long robot arm. This is the most powerful arm ever installed on a Mars rover. Even though the Mars 2020 rover shares much of its design with Curiosity, the new arm was redesigned to be able to do much more complex science, drilling into rocks to collect samples that can be stored for later recovery.
JPL is well known for developing robots that do amazing work in incredibly distant and hostile environments. The Opportunity Mars rover, to name just one example, had a 90-day planned mission but remained operational for 5,498 days in a robot unfriendly place full of dust and wild temperature swings where even the most basic maintenance or repair is utterly impossible. (Its twin rover, Spirit, operated for 2,269 days.)
To learn more about the process behind designing robotic systems that are capable of feats like these, we talked with Matt Robinson, one of the engineers who designed the Mars 2020 rover’s new robot arm.
The Mars 2020 rover (which will be officially named through a public contest which opens this fall) is scheduled to launch in July of 2020, landing in Jezero Crater on February 18, 2021. The overall design is similar to the Mars Science Laboratory (MSL) rover, named Curiosity, which has been exploring Gale Crater on Mars since August 2012, except Mars 2020 will be a bit bigger and capable of doing even more amazing science. It will outweigh Curiosity by about 150 kilograms, but it’s otherwise about the same size, and uses the same type of radioisotope thermoelectric generator for power. Upgraded aluminum wheels will be more durable than Curiosity’s wheels, which have suffered significant wear. Mars 2020 will land on Mars in the same way that Curiosity did, with a mildly insane descent to the surface from a rocket-powered hovering “skycrane.”
Photo: NASA/JPL-Caltech
Last month, engineers at NASA's Jet Propulsion Laboratory install the main robotic arm on the Mars 2020 rover. Measuring 2.1 meters long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret.
Mars 2020 really steps it up when it comes to science. The most interesting new capability (besides serving as the base station for a highly experimental autonomous helicopter) is that the rover will be able to take surface samples of rock and soil, put them into tubes, seal the tubes up, and then cache the tubes on the surface for later retrieval (and potentially return to Earth for analysis). Collecting the samples is the job of a drill on the end of the robot arm that can be equipped with a variety of interchangeable bits, but the arm holds a number of other instruments as well. A “turret” can swap between the drill, a mineral identification sensor suite called SHERLOC, and an X-ray spectrometer and camera called PIXL. Fundamentally, most of Mars 2020’s science work is going to depend on the arm and the hardware that it carries, both in terms of close-up surface investigations and collecting samples for caching.
Matt Robinson is the Deputy Delivery Manager for the Sample Caching System on the Mars 2020 rover, which covers the robotic arm itself, the drill at the end of the arm, and the sample caching system within the body of the rover that manages the samples. Robinson has been at JPL since 2001, and he’s worked on the Mars Phoenix Lander mission as the robotic arm flight software developer and robotic arm test and operations engineer, as well as on Curiosity as the robotic arm test and operations lead engineer.
We spoke with Robinson about how the Mars 2020 arm was designed, and what it’s like to be building robots for exploring other planets.
IEEE Spectrum: How’d you end up working on robots at JPL?
Matt Robinson: When I was a grad student, my focus was on vision-based robotics research, so the kinds of things they do at JPL, or that we do at JPL now, were right within my wheelhouse. One of my advisors in grad school had a former student who was out here at JPL, so that’s how I made the contact. But I was very excited to come to JPL—as a young grad student working in robotics, space robotics was where it’s at.
For a robotics engineer, working in space is kind of the gold standard. You’re working in a challenging environment and you have to be prepared for any time of eventuality that may occur. And when you send your robot out to space, there’s no getting it back.
Once the rover arrives on Mars and you receive pictures back from it operating, there’s no greater feeling. You’ve built something that is now working 200+ million miles away. It’s an awesome experience! I have to pinch myself sometimes with the job I do. Working at JPL on space robotics is the holy grail for a roboticist.
What’s different about designing an arm for a rover that will operate on Mars?
We spent over five years designing, manufacturing, assembling, and testing the arm. Scientists have defined the high-level goals for what the mission has to do—acquire core samples and process them for return, carry science instruments on the arm to help determine what rocks to sample, and so on. We, as engineers, define the next level of requirements that support those goals.
When you’re building a robotic arm for another planet, you want to design something that is robust to the environment as well as robust from fault-protection standpoint. On Mars, we’re talking about an environment where the temperature can vary 100 degrees Celsius over the course of the day, so it’s very challenging thermally. With force sensing for instance, that’s a major problem. Force sensors aren’t typically designed to operate or even survive in temperature ranges that we’re talking about. So a lot of effort has to go into force sensor design and testing.
And then there’s a do-no-harm aspect—you’re sending this piece of hardware 200 million miles away, and you can’t get it back, so you want to make sure your hardware and software are robust and cannot do any harm to the system. It’s definitely a change in mindset from a terrestrial robot, where if you make a mistake, you can repair it.
“Once the rover arrives on Mars and you receive pictures back from it, there’s no greater feeling . . . I have to pinch myself sometimes with the job I do.”
—Matt Robinson, NASA JPL
How do you decide how much redundancy is enough?
That’s always a big question. It comes down to a couple of things, typically: mass and volume. You have a certain amount of mass that’s allocated to the robotic arm and we have a volume that it has to fit within, so those are often the drivers of the amount of redundancy that you can fit. We also have a lot of experience with sending arms to other planets, and at the beginning of projects, we establish a number of requirements that the design has to meet, and that’s where the redundancy is captured.
How much is the design of the arm driven by this need for redundancy, as opposed to trying to pack in all of the instrumentation that you want to have on there to do as much science as possible?
The requirements were driven by a couple of things. We knew roughly how big the instruments on the end of the arm were going to be, so the arm design is partially driven by that, because as the instruments get bigger and heavier, the arm has to get bigger and stronger. We have our coring drill at the end of the arm, and coring requires a certain level of force, so the arm has to be strong enough to do that. Those all became requirements that drove the design of the arm. On top of that, there was also that this arm also has to operate within the Martian environment, so you have things like the temperature changes and thermal expansion—you have to design for that as well. It’s a combination of both, really.
You were a test engineer for the arm used on the MSL rover. What did you learn from Spirit and Opportunity that informed the design of the arm on Curiosity?
Spirit and Opportunity did not have any force-sensing on the robotic arm. We had contact sensors that were good enough. Spirit and Opportunity’s arms were used to place instruments, that’s all it had to do, primarily. When you’re talking about actually acquiring samples, it’s not a matter of just placing the tool—you also have to apply forces to the environment. And once you start doing that, you really need a force sensor to protect you, and also to determine how much load to apply. So that was a big theme, a big difference between MSL and Spirit and Opportunity.
The size grew a lot too. If you look at Spirit and Opportunity, they’re the size of a riding lawnmower. Curiosity and the Mars 2020 rovers are the size of a small car. The Spirit and Opportunity arm was under a meter long, and the 2020 arm is twice that, and it has to apply forces that are much higher than the Spirit and Opportunity arm. From Curiosity to 2020, the payload of the arm grew by 50 percent, but the mass of the arm did not grow a whole lot, because our mass budget was kind of tight. We had to design an arm that was stronger, that had more capability, without adding more mass. That was a big challenge. We were fairly efficient on Curiosity, but on 2020, we sharpened the pencil even more.
Photo: NASA/JPL-Caltech
Three generations of Mars rovers developed at NASA’s Jet Propulsion Laboratory. Front and center: Sojourner rover, which landed on Mars in 1997 as part of the Mars Pathfinder Project. Left: Mars Exploration Rover Project rover (Spirit and Opportunity), which landed on Mars in 2004. Right: Mars Science Laboratory rover (Curiosity), which landed on Mars in August 2012.
MSL used its arm to drill into rocks like Mars 2020 will—how has the experience of operating MSL on Mars changed your thinking on how to make that work?
On MSL, the force sensor was used primarily for fault protection, just to protect the arm from being overloaded. [When drilling] we used a stiffness model of the arm to apply the force. The force sensor was only used in case you overloaded, and that’s very different from doing active force control, where you’re actually using the force sensor in a control loop.
On Mars 2020, we’re taking it to the next step, using the force sensor to actually actively control the level of force, both for pushing on the ground and for doing bit exchange. That’s a key point because fault protection to prevent damage usually has larger error bars. When you’re trying to actually push on the environment to apply force, and you’re doing active force control, the force sensor has to be significantly more accurate.
So a big thing that we learned on MSL—it was the first time we’d actually flown a force sensor, and we learned a lot about how to design and test force sensors to be used on the surface of Mars.
How do you effectively test the Mars 2020 arm on Earth?
That’s a good question. The arm was designed to operate on either Earth or Mars. It’s strong enough to do both. We also have a stiffness model of the arm which includes allows us to compensate for differences in gravity. For testing, we make two copies of the robotic arm. We have our copy that we’re going to fly to Mars, which is what we call our flight model, and we have our engineering model. They’re effectively duplicates of each other. The engineering arm stays on earth, so even once we’ve sent the flight model to Mars, we can continue to test. And if something were to happen, if say a drill bit got stuck in the ground on Mars, we could try to replicate those conditions on Earth with our engineering model arm, and use that to test out different scenarios to overcome the problem.
How much autonomy will the arm have?
We have different models of autonomy. We have pretty high levels flight software and, for instance, we have a command that just says “dock,” that moves the arm does all the force control to the dock the arm with the carousel. For surface interaction, we have stereo cameras on the rover, and those cameras allow us to generate 3D terrain models. Using those 3D terrain models, scientists can select a target on that surface, and then we can position the arm on the target.
Scientists like to select the particular sample targets, because they have very specific types of rocks they’re looking for to sample from. On 2020, we’re providing the ability for the next level of autonomy for the rover to drive up to an area and at least do the initial surveying of that area, so the scientists can select the specific target. So the way that that would happen is, if there’s an area off in the distance that the scientists find potentially interesting, the rover will autonomously drive up to it, and deploy the arm and take all the pictures so that we can generate those 3D terrain models and then the next day the scientists can pick the specific target they want. It’s really cool.
JPL is famous for making robots that operate for far longer than NASA necessarily plans for. What’s it like designing hardware and software for a system that will (hopefully) become part of that legacy?
The way that I look at it is, when you’re building an arm that’s going to go to another planet, all the things that could go wrong… You have to build something that’s robust and that can survive all that. It’s not that we’re trying to overdesign arms so that they’ll end up lasting much, much longer, it’s that, given all the things that you can encounter within a fairly unknown environment, and the level of robustness of the design you have to apply, it just so happens we end up with designs that end up lasting a lot longer than they do. Which is great, but we’re not held to that, although we’re very excited when we see them last that long. Without any calibration, without any maintenance, exactly, it’s amazing. They show their wear over time, but they still operate, it’s super exciting, it’s very inspirational to see.
[ Mars 2020 Rover ] Continue reading →
#435714 Universal Robots Introduces Its ...
Universal Robots, already the dominant force in collaborative robots, is flexing its muscles in an effort to further expand its reach in the cobots market. The Danish company is introducing today the UR16e, its strongest robotic arm yet, with a payload capability of 16 kilograms (35.3 lbs), reach of 900 millimeters, and repeatability of +/- 0.05 mm.
Universal says the new “heavy duty payload cobot” will allow customers to automate a broader range of processes, including packaging and palletizing, nut and screw driving, and high-payload and CNC machine tending.
In early 2015, Universal introduced the UR3, its smallest robot, which joined the UR5 and the flagship UR10, offering a payload capability of 3, 5, and 10 kg, respectively. Now the company is going in the other direction, announcing a bigger, stronger arm.
“With Universal joining its competitors in extending the reach and payload capacity of its cobots, a new standard of capability is forming,” Rian Whitton, a senior analyst at ABI Research, in London, tweeted.
Like its predecessors, the UR16e is part of Universal’s e-Series platform, which features 6 degrees of freedom and force/torque sensing on the tool flange. The UR family of cobots have stood out from the competition by being versatile in a variety of applications and, most important, easy to deploy and program. Universal didn’t release UR16e’s price, saying only that it is about 10 percent higher than that of the UR10e, which is about $50,000, depending on the configuration.
Jürgen von Hollen, president of Universal Robots, says the company decided to launch the UR16e after studying the market and talking to customers about their needs. “What came out of that process is we understood payload was a true barrier for a lot of customers,” he tells IEEE Spectrum. The 16 kg payload will be particularly useful for applications that require mounting specialized tools on the arm to perform tasks like screw driving and machine tending, he explains. Customers that could benefit from such applications include manufacturing, material handling, and automotive companies.
“We’ve added the payload, and that will open up that market for us,” von Hollen says.
The difference between Universal and Rethink
Universal has grown by leaps and bounds since its founding in 2008. By 2015, it had sold more than 5,000 robots; that number was close to 40,000 as of last year. During the same period, revenue more than doubled from about $100 million to $234 million. At a time when a string of robot makers have shuttered, including most notably Rethink Robotics, a cobots pioneer and Universal’s biggest rival, Universal finds itself in an enviable position, having amassed a commanding market share, estimated at between 50 to 60 percent.
About Rethink, von Hollen says the Boston-based company was a “good competitor,” helping disseminate the advantages and possibilities of cobots. “When Rethink basically ended it was more of a negative than a positive, from my perspective,” he says. In his view, a major difference between the two companies is that Rethink focused on delivering full-fledged applications to customers, whereas Universal focused on delivering a product to the market and letting the system integrators and sales partners deploy the robots to the customer base.
“We’ve always been very focused on delivering the product, whereas I think Rethink was much more focused on applications, very early on, and they added a level of complexity to their company that made it become very de-focused,” he says.
The collaborative robots market: massive growth
And yet, despite its success, Universal is still tiny when you compare it to the giants of industrial automation, which include companies like ABB, Fanuc, Yaskawa, and Kuka, with revenue in the billions of dollars. Although some of these companies have added cobots to their product portfolios—ABB’s YuMi, for example—that market represents a drop in the bucket when you consider global robot sales: The size of the cobots market was estimated at $700 million in 2018, whereas the global market for industrial robot systems (including software, peripherals, and system engineering) is close to $50 billion.
Von Hollen notes that cobots are expected to go through an impressive growth curve—nearly 50 percent year after year until 2025, when sales will reach between $9 to $12 billion. If Universal can maintain its dominance and capture a big slice of that market, it’ll add up to a nice sum. To get there, Universal is not alone: It is backed by U.S. electronics testing equipment maker Teradyne, which acquired Universal in 2015 for $285 million.
“The amount of resources we invest year over year matches the growth we had on sales,” von Hollen says. Universal currently has more than 650 employees, most based at its headquarters in Odense, Denmark, and the rest scattered in 27 offices in 18 countries. “No other company [in the cobots segment] is so focused on one product.”
[ Universal Robots ] Continue reading →
#435676 Intel’s Neuromorphic System Hits 8 ...
At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.
Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.
“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.
Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”
Photo: Tim Herman/Intel Corporation
One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.
Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.
For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)
(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)
Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.
Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)
Photo: Tim Herman/Intel Corporation
A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.
Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading →
#435674 MIT Future of Work Report: We ...
Robots aren’t going to take everyone’s jobs, but technology has already reshaped the world of work in ways that are creating clear winners and losers. And it will continue to do so without intervention, says the first report of MIT’s Task Force on the Work of the Future.
The supergroup of MIT academics was set up by MIT President Rafael Reif in early 2018 to investigate how emerging technologies will impact employment and devise strategies to steer developments in a positive direction. And the headline finding from their first publication is that it’s not the quantity of jobs we should be worried about, but the quality.
Widespread press reports of a looming “employment apocalypse” brought on by AI and automation are probably wide of the mark, according to the authors. Shrinking workforces as developed countries age and outstanding limitations in what machines can do mean we’re unlikely to have a shortage of jobs.
But while unemployment is historically low, recent decades have seen a polarization of the workforce as the number of both high- and low-skilled jobs have grown at the expense of the middle-skilled ones, driving growing income inequality and depriving the non-college-educated of viable careers.
This is at least partly attributable to the growth of digital technology and automation, the report notes, which are rendering obsolete many middle-skilled jobs based around routine work like assembly lines and administrative support.
That leaves workers to either pursue high-skilled jobs that require deep knowledge and creativity, or settle for low-paid jobs that rely on skills—like manual dexterity or interpersonal communication—that are still beyond machines, but generic to most humans and therefore not valued by employers. And the growth of emerging technology like AI and robotics is only likely to exacerbate the problem.
This isn’t the first report to note this trend. The World Bank’s 2016 World Development Report noted how technology is causing a “hollowing out” of labor markets. But the MIT report goes further in saying that the cause isn’t simply technology, but the institutions and policies we’ve built around it.
The motivation for introducing new technology is broadly assumed to be to increase productivity, but the authors note a rarely-acknowledged fact: “Not all innovations that raise productivity displace workers, and not all innovations that displace workers substantially raise productivity.”
Examples of the former include computer-aided design software that makes engineers and architects more productive, while examples of the latter include self-service checkouts and automated customer support that replace human workers, often at the expense of a worse customer experience.
While the report notes that companies have increasingly adopted the language of technology augmenting labor, in reality this has only really benefited high-skilled workers. For lower-skilled jobs the motivation is primarily labor cost savings, which highlights the other major force shaping technology’s impact on employment: shareholder capitalism.
The authors note that up until the 1980s, increasing productivity resulted in wage growth across the economic spectrum, but since then average wage growth has failed to keep pace and gains have dramatically skewed towards the top earners.
The report shies away from directly linking this trend to the birth of Reaganomics (something others have been happy to do), but it notes that American veneration of the shareholder as the primary stakeholder in a business and tax policies that incentivize investment in capital rather than labor have exacerbated the negative impacts technology can have on employment.
That means the current focus on re-skilling workers to thrive in the new economy is a necessary, but not sufficient, solution to the disruptive impact technology is having on work, the authors say.
Alongside significant investment in education, fiscal policies need to be re-balanced away from subsidizing investment in physical capital and towards boosting investment in human capital, the authors write, and workers need to have a greater say in corporate decision-making.
The authors point to other developed economies where productivity growth, income growth, and equality haven’t become so disconnected thanks to investments in worker skills, social safety nets, and incentives to invest in human capital. Whether such a radical reshaping of US economic policy is achievable in today’s political climate remains to be seen, but the authors conclude with a call to arms.
“The failure of the US labor market to deliver broadly shared prosperity despite rising productivity is not an inevitable byproduct of current technologies or free markets,” they write. “We can and should do better.”
Image Credit: Simon Abrams / Unsplash/a> Continue reading →
#435662 Video Friday: This 3D-Printed ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
Let us know if you have suggestions for next week, and enjoy today’s videos.
We’re used to seeing bristle bots about the size of a toothbrush head (which is not a coincidence), but Georgia Tech has downsized them, with some interesting benefits.
Researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.
The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.
“We are working to make the technology robust, and we have a lot of potential applications in mind,” said Azadeh Ansari, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We are working at the intersection of mechanics, electronics, biology and physics. It’s a very rich area and there’s a lot of room for multidisciplinary concepts.”
[ Georgia Tech ]
Most consumer drones are “multi-copters,” meaning that they have a series of rotors or propellers that allow them to hover like helicopters. But having rotors severely limits their energy efficiency, which means that they can’t easily carry heavy payloads or fly for long periods of time. To get the best of both worlds, drone designers have tried to develop “hybrid” fixed-wing drones that can fly as efficiently as airplanes, while still taking off and landing vertically like multi-copters.
These drones are extremely hard to control because of the complexity of dealing with their flight dynamics, but a team from MIT CSAIL aims to make the customization process easier, with a new system that allows users to design drones of different sizes and shapes that can nimbly switch between hovering and gliding – all by using a single controller.
In future work, the team plans to try to further increase the drone’s maneuverability by improving its design. The model doesn’t yet fully take into account complex aerodynamic effects between the propeller’s airflow and the wings. And lastly, their method trained the copter with “yaw velocity” set at zero, which means that it cannot currently perform sharp turns.
[ Paper ] via [ MIT ]
We’re not quite at the point where we can 3D print entire robots, but UCSD is getting us closer.
The UC San Diego researchers’ insight was twofold. They turned to a commercially available printer for the job, (the Stratasys Objet350 Connex3—a workhorse in many robotics labs). In addition, they realized one of the materials used by the 3D printer is made of carbon particles that can conduct power to sensors when connected to a power source. So roboticists used the black resin to manufacture complex sensors embedded within robotic parts made of clear polymer. They designed and manufactured several prototypes, including a gripper.
When stretched, the sensors failed at approximately the same strain as human skin. But the polymers the 3D printer uses are not designed to conduct electricity, so their performance is not optimal. The 3D printed robots also require a lot of post-processing before they can be functional, including careful washing to clean up impurities and drying.
However, researchers remain optimistic that in the future, materials will improve and make 3D printed robots equipped with embedded sensors much easier to manufacture.
[ UCSD ]
Congrats to Team Homer from the University of Koblenz-Landau, who won the RoboCup@Home world championship in Sydney!
[ Team Homer ]
When you’ve got a robot with both wheels and legs, motion planning is complicated. IIT has developed a new planner for CENTAURO that takes advantage of the different ways that the robot is able to get past obstacles.
[ Centauro ]
Thanks Dimitrios!
If you constrain a problem tightly enough, you can solve it even with a relatively simple robot. Here’s an example of an experimental breakfast robot named “Loraine” that can cook eggs, bacon, and potatoes using what looks to be zero sensing at all, just moving to different positions and actuating its gripper.
There’s likely to be enough human work required in the prep here to make the value that the robot adds questionable at best, but it’s a good example of how you can make a relatively complex task robot-compatible as long as you set it up in just the right way.
[ Connected Robotics ] via [ RobotStart ]
It’s been a while since we’ve seen a ball bot, and I’m not sure that I’ve ever seen one with a manipulator on it.
[ ETH Zurich RSL ]
Soft Robotics’ new mini fingers are able to pick up taco shells without shattering them, which as far as I can tell is 100 percent impossible for humans to do.
[ Soft Robotics ]
Yes, Starship’s wheeled robots can climb curbs, and indeed they have a pretty neat way of doing it.
[ Starship ]
Last year we posted a long interview with Christoph Bartneck about his research into robots and racism, and here’s a nice video summary of the work.
[ Christoph Bartneck ]
Canada’s contribution to the Lunar Gateway will be a smart robotic system which includes a next-generation robotic arm known as Canadarm3, as well as equipment, and specialized tools. Using cutting-edge software and advances in artificial intelligence, this highly-autonomous system will be able to maintain, repair and inspect the Gateway, capture visiting vehicles, relocate Gateway modules, help astronauts during spacewalks, and enable science both in lunar orbit and on the surface of the Moon.
[ CSA ]
An interesting demo of how Misty can integrate sound localization with other services.
[ Misty Robotics ]
The third and last period of H2020 AEROARMS project has brought the final developments in industrial inspection and maintenance tasks, such as the crawler retrieval and deployment (DLR) or the industrial validation in stages like a refinery or a cement factory.
[ Aeroarms ]
The Guardian S remote visual inspection and surveillance robot navigates a disaster training site to demonstrate its advanced maneuverability, long-range wireless communications and extended run times.
[ Sarcos ]
This appears to be a cake frosting robot and I wish I had like 3 more hours of this to share:
Also here is a robot that picks fried chicken using a curiously successful technique:
[ Kazumichi Moriyama ]
This isn’t strictly robots, but professor Hiroshi Ishii, associate director of the MIT Media Lab, gave a fascinating SIGCHI Lifetime Achievement Talk that’s absolutely worth your time.
[ Tangible Media Group ] Continue reading →