Tag Archives: sky

#435260 How Tech Can Help Curb Emissions by ...

Trees are a low-tech, high-efficiency way to offset much of humankind’s negative impact on the climate. What’s even better, we have plenty of room for a lot more of them.

A new study conducted by researchers at Switzerland’s ETH-Zürich, published in Science, details how Earth could support almost an additional billion hectares of trees without the new forests pushing into existing urban or agricultural areas. Once the trees grow to maturity, they could store more than 200 billion metric tons of carbon.

Great news indeed, but it still leaves us with some huge unanswered questions. Where and how are we going to plant all the new trees? What kind of trees should we plant? How can we ensure that the new forests become a boon for people in those areas?

Answers to all of the above likely involve technology.

Math + Trees = Challenges
The ETH-Zürich research team combined Google Earth mapping software with a database of nearly 80,000 existing forests to create a predictive model for optimal planting locations. In total, 0.9 billion hectares of new, continuous forest could be planted. Once mature, the 500 billion new trees in these forests would be capable of storing about two-thirds of the carbon we have emitted since the industrial revolution.

Other researchers have noted that the study may overestimate how efficient trees are at storing carbon, as well as underestimate how much carbon humans have emitted over time. However, all seem to agree that new forests would offset much of our cumulative carbon emissions—still an impressive feat as the target of keeping global warming this century at under 1.5 degrees Celsius becomes harder and harder to reach.

Recently, there was a story about a Brazilian couple who replanted trees in the valley where they live. The couple planted about 2.7 million trees in two decades. Back-of-the-napkin math shows that they on average planted 370 trees a day, meaning planting 500 billion trees would take about 3.7 million years. While an over-simplification, the point is that planting trees by hand is not realistic. Even with a million people going at a rate of 370 trees a day, it would take 83 years. Current technologies are also not likely to be able to meet the challenge, especially in remote locations.

Tree-Bombing Drones
Technology can speed up the planting process, including a new generation of drones that take tree planting to the skies. Drone planting generally involves dropping biodegradable seed pods at a designated area. The pods dissolve over time, and the tree seeds grow in the earth below. DroneSeed is one example; its 55-pound drones can plant up to 800 seeds an hour. Another startup, Biocarbon Engineering, has used various techniques, including drones, to plant 38 different species of trees across three continents.

Drone planting has distinct advantages when it comes to planting in hard-to-access areas—one example is mangrove forests, which are disappearing rapidly, increasing the risk of floods and storm surges.

Challenges include increasing the range and speed of drone planting, and perhaps most importantly, the success rate, as automatic planting from a height is still likely to be less accurate when it comes to what depth the tree saplings are planted. However, drones are already showing impressive numbers for sapling survival rates.

AI, Sensors, and Eye-In-the-Sky
Planting the trees is the first step in a long road toward an actual forest. Companies are leveraging artificial intelligence and satellite imagery in a multitude of ways to increase protection and understanding of forested areas.

20tree.ai, a Portugal-based startup, uses AI to analyze satellite imagery and monitor the state of entire forests at a fraction of the cost of manual monitoring. The approach can lead to faster identification of threats like pest infestation and a better understanding of the state of forests.

AI can also play a pivotal role in protecting existing forest areas by predicting where deforestation is likely to occur.

Closer to the ground—and sometimes in it—new networks of sensors can provide detailed information about the state and needs of trees. One such project is Trace, where individual trees are equipped with a TreeTalker, an internet of things-based device that can provide real-time monitoring of the tree’s functions and well-being. The information can be used to, among other things, optimize the use of available resources, such as providing the exact amount of water a tree needs.

Budding Technologies Are Controversial
Trees are in many ways fauna’s marathon runners—slow-growing and sturdy, but still susceptible to sickness and pests. Many deforested areas are likely not as rich in nutrients as they once were, which could slow down reforestation. Much of the positive impact that said trees could have on carbon levels in the atmosphere is likely decades away.

Bioengineering, for example through CRISPR, could provide solutions, making trees more resistant and faster-growing. Such technologies are being explored in relation to Ghana’s at-risk cocoa trees. Other exponential technologies could also hold much future potential—for instance micro-robots to assist the dwindling number of bees with pollination.

These technologies remain mired in controversy, and perhaps rightfully so. Bioengineering’s massive potential is for many offset by the inherent risks of engineered plants out-competing existing fauna or growing beyond our control. Micro-robots for pollination may solve a problem, but don’t do much to address the root cause: that we seem to be disrupting and destroying integral parts of natural cycles.

Tech Not The Whole Answer
So, is it realistic to plant 500 billion new trees? The short answer would be that yes, it’s possible—with the help of technology.

However, there are many unanswered challenges. For example, many of areas identified by the ETH-Zürich research team are not readily available for reforestation. Some are currently reserved for grazing, others owned by private entities, and others again are located in remote areas or areas prone to political instability, beyond the reach of most replanting efforts.

If we do wish to plant 500 billion trees to offset some of the negative impacts we have had on the planet, we might well want to combine the best of exponential technology with reforestation as well as a move to other forms of agriculture.

Such an approach might also help address a major issue: that few of the proposed new forests will likely succeed without ensuring that people living in and around the areas where reforestation takes place become involved, and can reap rewards from turning arable land into forests.

Image Credit: Lillac/Shutterstock.com Continue reading

Posted in Human Robots

#434797 This Week’s Awesome Stories From ...

GENE EDITING
Genome Engineers Made More Than 13,000 Genome Edits in a Single Cell
Antonio Regalado | MIT Technology Review
“The group, led by gene technologist George Church, wants to rewrite genomes at a far larger scale than has currently been possible, something it says could ultimately lead to the ‘radical redesign’ of species—even humans.”

ROBOTICS
Inside Google’s Rebooted Robotics Program
Cade Metz | The New York Times
“Google’s new lab is indicative of a broader effort to bring so-called machine learning to robotics. …Many believe that machine learning—not extravagant new devices—will be the key to developing robotics for manufacturing, warehouse automation, transportation and many other tasks.

VIDEOS
Boston Dynamics Builds the Warehouse Robot of Jeff Bezos’ Dreams
Luke Dormehl | Digital Trends
“…for anyone wondering what the future of warehouse operation is likely to look like, this offers a far more practical glimpse of the years to come than, say, a dancing dog robot. As Boston Dynamics moves toward commercializing its creations for the first time, this could turn out to be a lot closer than you might think.”

TECHNOLOGY
Europe Is Splitting the Internet Into Three
Casey Newton | The Verge
“The internet had previously been divided into two: the open web, which most of the world could access; and the authoritarian web of countries like China, which is parceled out stingily and heavily monitored. As of today, though, the web no longer feels truly worldwide. Instead we now have the American internet, the authoritarian internet, and the European internet. How does the EU Copyright Directive change our understanding of the web?”

VIRTUAL REALITY
No Man’s Sky’s Next Update Will Let You Explore Infinite Space in Virtual Reality
Taylor Hatmaker | TechCrunch
“Assuming the game runs well enough, No Man’s Sky Virtual Reality will be a far cry from gimmicky VR games that lack true depth, offering one of the most expansive—if not the most expansive—VR experiences to date.”

3D PRINTING
3D Metal Printing Tries to Break Into the Manufacturing Mainstream
Mark Anderson | IEEE Spectrum
“It’s been five or so years since 3D printing was at peak hype. Since then, the technology has edged its way into a new class of materials and started to break into more applications. Today, 3D printers are being seriously considered as a means to produce stainless steel 5G smartphones, high-strength alloy gas-turbine blades, and other complex metal parts.”

Image Credit: ale de sun / Shutterstock.com Continue reading

Posted in Human Robots

#434781 What Would It Mean for AI to Become ...

As artificial intelligence systems take on more tasks and solve more problems, it’s hard to say which is rising faster: our interest in them or our fear of them. Futurist Ray Kurzweil famously predicted that “By 2029, computers will have emotional intelligence and be convincing as people.”

We don’t know how accurate this prediction will turn out to be. Even if it takes more than 10 years, though, is it really possible for machines to become conscious? If the machines Kurzweil describes say they’re conscious, does that mean they actually are?

Perhaps a more relevant question at this juncture is: what is consciousness, and how do we replicate it if we don’t understand it?

In a panel discussion at South By Southwest titled “How AI Will Design the Human Future,” experts from academia and industry discussed these questions and more.

Wait, What Is AI?
Most of AI’s recent feats—diagnosing illnesses, participating in debate, writing realistic text—involve machine learning, which uses statistics to find patterns in large datasets then uses those patterns to make predictions. However, “AI” has been used to refer to everything from basic software automation and algorithms to advanced machine learning and deep learning.

“The term ‘artificial intelligence’ is thrown around constantly and often incorrectly,” said Jennifer Strong, a reporter at the Wall Street Journal and host of the podcast “The Future of Everything.” Indeed, one study found that 40 percent of European companies that claim to be working on or using AI don’t actually use it at all.

Dr. Peter Stone, associate chair of computer science at UT Austin, was the study panel chair on the 2016 One Hundred Year Study on Artificial Intelligence (or AI100) report. Based out of Stanford University, AI100 is studying and anticipating how AI will impact our work, our cities, and our lives.

“One of the first things we had to do was define AI,” Stone said. They defined it as a collection of different technologies inspired by the human brain to be able to perceive their surrounding environment and figure out what actions to take given these inputs.

Modeling on the Unknown
Here’s the crazy thing about that definition (and about AI itself): we’re essentially trying to re-create the abilities of the human brain without having anything close to a thorough understanding of how the human brain works.

“We’re starting to pair our brains with computers, but brains don’t understand computers and computers don’t understand brains,” Stone said. Dr. Heather Berlin, cognitive neuroscientist and professor of psychiatry at the Icahn School of Medicine at Mount Sinai, agreed. “It’s still one of the greatest mysteries how this three-pound piece of matter can give us all our subjective experiences, thoughts, and emotions,” she said.

This isn’t to say we’re not making progress; there have been significant neuroscience breakthroughs in recent years. “This has been the stuff of science fiction for a long time, but now there’s active work being done in this area,” said Amir Husain, CEO and founder of Austin-based AI company Spark Cognition.

Advances in brain-machine interfaces show just how much more we understand the brain now than we did even a few years ago. Neural implants are being used to restore communication or movement capabilities in people who’ve been impaired by injury or illness. Scientists have been able to transfer signals from the brain to prosthetic limbs and stimulate specific circuits in the brain to treat conditions like Parkinson’s, PTSD, and depression.

But much of the brain’s inner workings remain a deep, dark mystery—one that will have to be further solved if we’re ever to get from narrow AI, which refers to systems that can perform specific tasks and is where the technology stands today, to artificial general intelligence, or systems that possess the same intelligence level and learning capabilities as humans.

The biggest question that arises here, and one that’s become a popular theme across stories and films, is if machines achieve human-level general intelligence, does that also mean they’d be conscious?

Wait, What Is Consciousness?
As valuable as the knowledge we’ve accumulated about the brain is, it seems like nothing more than a collection of disparate facts when we try to put it all together to understand consciousness.

“If you can replace one neuron with a silicon chip that can do the same function, then replace another neuron, and another—at what point are you still you?” Berlin asked. “These systems will be able to pass the Turing test, so we’re going to need another concept of how to measure consciousness.”

Is consciousness a measurable phenomenon, though? Rather than progressing by degrees or moving through some gray area, isn’t it pretty black and white—a being is either conscious or it isn’t?

This may be an outmoded way of thinking, according to Berlin. “It used to be that only philosophers could study consciousness, but now we can study it from a scientific perspective,” she said. “We can measure changes in neural pathways. It’s subjective, but depends on reportability.”

She described three levels of consciousness: pure subjective experience (“Look, the sky is blue”), awareness of one’s own subjective experience (“Oh, it’s me that’s seeing the blue sky”), and relating one subjective experience to another (“The blue sky reminds me of a blue ocean”).

“These subjective states exist all the way down the animal kingdom. As humans we have a sense of self that gives us another depth to that experience, but it’s not necessary for pure sensation,” Berlin said.

Husain took this definition a few steps farther. “It’s this self-awareness, this idea that I exist separate from everything else and that I can model myself,” he said. “Human brains have a wonderful simulator. They can propose a course of action virtually, in their minds, and see how things play out. The ability to include yourself as an actor means you’re running a computation on the idea of yourself.”

Most of the decisions we make involve envisioning different outcomes, thinking about how each outcome would affect us, and choosing which outcome we’d most prefer.

“Complex tasks you want to achieve in the world are tied to your ability to foresee the future, at least based on some mental model,” Husain said. “With that view, I as an AI practitioner don’t see a problem implementing that type of consciousness.”

Moving Forward Cautiously (But Not too Cautiously)
To be clear, we’re nowhere near machines achieving artificial general intelligence or consciousness, and whether a “conscious machine” is possible—not to mention necessary or desirable—is still very much up for debate.

As machine intelligence continues to advance, though, we’ll need to walk the line between progress and risk management carefully.

Improving the transparency and explainability of AI systems is one crucial goal AI developers and researchers are zeroing in on. Especially in applications that could mean the difference between life and death, AI shouldn’t advance without people being able to trace how it’s making decisions and reaching conclusions.

Medicine is a prime example. “There are already advances that could save lives, but they’re not being used because they’re not trusted by doctors and nurses,” said Stone. “We need to make sure there’s transparency.” Demanding too much transparency would also be a mistake, though, because it will hinder the development of systems that could at best save lives and at worst improve efficiency and free up doctors to have more face time with patients.

Similarly, self-driving cars have great potential to reduce deaths from traffic fatalities. But even though humans cause thousands of deadly crashes every day, we’re terrified by the idea of self-driving cars that are anything less than perfect. “If we only accept autonomous cars when there’s zero probability of an accident, then we will never accept them,” Stone said. “Yet we give 16-year-olds the chance to take a road test with no idea what’s going on in their brains.”

This brings us back to the fact that, in building tech modeled after the human brain—which has evolved over millions of years—we’re working towards an end whose means we don’t fully comprehend, be it something as basic as choosing when to brake or accelerate or something as complex as measuring consciousness.

“We shouldn’t charge ahead and do things just because we can,” Stone said. “The technology can be very powerful, which is exciting, but we have to consider its implications.”

Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#434611 This Week’s Awesome Stories From ...

AUTOMATION
The Rise of the Robot Reporter
Jaclyn Paiser | The New York Times
“In addition to covering company earnings for Bloomberg, robot reporters have been prolific producers of articles on minor league baseball for The Associated Press, high school football for The Washington Post and earthquakes for The Los Angeles Times.”

ROBOTICS
Penny-Sized Ionocraft Flies With No Moving Parts
Evan Ackerman | IEEE Spectrum
“Electrohydrodynamic (EHD) thrusters, sometimes called ion thrusters, use a high strength electric field to generate a plasma of ionized air. …Magical, right? No moving parts, completely silent, and it flies!”

ARTIFICIAL INTELLIGENCE
Making New Drugs With a Dose of Artificial Intelligence
Cade Metz | The New York Times
“…DeepMind won the [protein folding] competition by a sizable margin—it improved the prediction accuracy nearly twice as much as experts expected from the contest winner. DeepMind’s victory showed how the future of biochemical research will increasingly be driven by machines and the people who oversee those machines.”

COMPUTING
Nano-Switches Made Out of Graphene Could Make Our Devices Even Smaller
Emerging Technology From the arXiv | MIT Technology Review
“For the first time, physicists have built reliable, efficient graphene nanomachines that can be fabricated on silicon chips. They could lead to even greater miniaturization.”

BIOTECH
The Problem With Big DNA
Sarah Zhang | The Atlantic
“It took researchers days to search through thousands of genome sequences. Now it takes just a few seconds. …As sequencing becomes more common, the number of publicly available bacterial and viral genomes has doubled. At the rate this work is going, within a few years multiple millions of searchable pathogen genomes will be available—a library of DNA and disease, spread the world over.”

CRYPTOCURRENCY
Fire (and Lots of It): Berkeley Researcher on the Only Way to Fix Cryptocurrency
Dan Goodin | Ars Technica
“Weaver said, there’s no basis for the promises that cryptocurrencies’ decentralized structure and blockchain basis will fundamentally transform commerce or economics. That means the sky-high valuations spawned by those false promises are completely unjustified. …To support that conclusion, Weaver recited an oft-repeated list of supposed benefits of cryptocurrencies and explained why, after closer scrutiny, he believed them to be myths.”

Image Credit: Katya Havok / Shutterstock.com Continue reading

Posted in Human Robots

#433852 How Do We Teach Autonomous Cars To Drive ...

Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.

Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.

What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?

Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.

At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.

Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.

Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.

The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.

Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.

We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.

A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.

The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.

Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.

Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading

Posted in Human Robots