Tag Archives: skills

#434256 Singularity Hub’s Top Articles of the ...

2018 was a big year for science and technology. The first gene-edited babies were born, as were the first cloned monkeys. SpaceX successfully launched the Falcon Heavy, and NASA’s InSight lander placed a seismometer on Mars. Bitcoin’s value plummeted, as did the cost of renewable energy. The world’s biggest neuromorphic supercomputer was switched on, and quantum communication made significant progress.

As 2018 draws to a close and we start anticipating the developments that will happen in 2019, here’s a look back at our ten most-read articles of the year.

This 3D Printed House Goes Up in a Day for Under $10,000
Vanessa Bates Ramirez | 3/18/18
“ICON and New Story’s vision is one of 3D printed houses acting as a safe, affordable housing alternative for people in need. New Story has already built over 800 homes in Haiti, El Salvador, Bolivia, and Mexico, partnering with the communities they serve to hire local labor and purchase local materials rather than shipping everything in from abroad.”

Machines Teaching Each Other Could Be the Biggest Exponential Trend in AI
Aaron Frank | 1/21/18
“Data is the fuel of machine learning, but even for machines, some data is hard to get—it may be risky, slow, rare, or expensive. In those cases, machines can share experiences or create synthetic experiences for each other to augment or replace data. It turns out that this is not a minor effect, it actually is self-amplifying, and therefore exponential.”

Low-Cost Soft Robot Muscles Can Lift 200 Times Their Weight and Self-Heal
Edd Gent | 1/11/18
“Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.”

These Are the Most Exciting Industries and Jobs of the Future
Raya Bidshahri | 1/29/18
“Technological trends are giving rise to what many thought leaders refer to as the “imagination economy.” This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.”

Inside a $1 Billion Real Estate Company Operating Entirely in VR
Aaron Frank | 4/8/18
“Incredibly, this growth is largely the result of eXp Realty’s use of an online virtual world similar to Second Life. That means every employee, contractor, and the thousands of agents who work at the company show up to work—team meetings, training seminars, onboarding sessions—all inside a virtual reality campus.To be clear, this is a traditional real estate brokerage helping people buy and sell physical homes—but they use a virtual world as their corporate offices.”

How Fast Is AI Progressing? Stanford’s New Report Card for Artificial Intelligence
Thomas Hornigold | 1/18/18
“Progress in AI over the next few years is far more likely to resemble a gradual rising tide—as more and more tasks can be turned into algorithms and accomplished by software—rather than the tsunami of a sudden intelligence explosion or general intelligence breakthrough. Perhaps measuring the ability of an AI system to learn and adapt to the work routines of humans in office-based tasks could be possible.”

When Will We Finally Achieve True Artificial Intelligence?
Thomas Hornigold | 1/1/18
“The issue with trying to predict the exact date of human-level AI is that we don’t know how far is left to go. This is unlike Moore’s Law. Moore’s Law, the doubling of processing power roughly every couple of years, makes a very concrete prediction about a very specific phenomenon. We understand roughly how to get there—improved engineering of silicon wafers—and we know we’re not at the fundamental limits of our current approach. You cannot say the same about artificial intelligence.”

IBM’s New Computer Is the Size of a Grain of Salt and Costs Less Than 10 Cents
Edd Gent | 3/26/18
“Costing less than 10 cents to manufacture, the company envisions the device being embedded into products as they move around the supply chain. The computer’s sensing, processing, and communicating capabilities mean it could effectively turn every item in the supply chain into an Internet of Things device, producing highly granular supply chain data that could streamline business operations.”

Why the Rise of Self-Driving Vehicles Will Actually Increase Car Ownership
Melba Kurman and Hod Lipson / 2/14/18
“When people predict the demise of car ownership, they are overlooking the reality that the new autonomous automotive industry is not going to be just a re-hash of today’s car industry with driverless vehicles. Instead, the automotive industry of the future will be selling what could be considered an entirely new product: a wide variety of intelligent, self-guiding transportation robots. When cars become a widely used type of transportation robot, they will be cheap, ubiquitous, and versatile.”

A Model for the Future of Education
Peter Diamandis | 9/12/18
“I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires. From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want. In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?”

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#434194 Educating the Wise Cyborgs of the Future

When we think of wisdom, we often think of ancient philosophers, mystics, or spiritual leaders. Wisdom is associated with the past. Yet some intellectual leaders are challenging us to reconsider wisdom in the context of the technological evolution of the future.

With the rise of exponential technologies like virtual reality, big data, artificial intelligence, and robotics, people are gaining access to increasingly powerful tools. These tools are neither malevolent nor benevolent on their own; human values and decision-making influence how they are used.

In future-themed discussions we often focus on technological progress far more than on intellectual and moral advancements. In reality, the virtuous insights that future humans possess will be even more powerful than their technological tools.

Tom Lombardo and Ray Todd Blackwood are advocating for exactly this. In their interdisciplinary paper “Educating the Wise Cyborg of the Future,” they propose a new definition of wisdom—one that is relevant in the context of the future of humanity.

We Are Already Cyborgs
The core purpose of Lombardo and Blackwood’s paper is to explore revolutionary educational models that will prepare humans, soon-to-be-cyborgs, for the future. The idea of educating such “cyborgs” may sound like science fiction, but if you pay attention to yourself and the world around you, cyborgs came into being a long time ago.

Techno-philosophers like Jason Silva point out that our tech devices are an abstract form of brain-machine interfaces. We use smartphones to store and retrieve information, perform calculations, and communicate with each other. Our devices are an extension of our minds.

According to philosophers Andy Clark and David Chalmers’ theory of the extended mind, we use this technology to expand the boundaries of our minds. We use tools like machine learning to enhance our cognitive skills or powerful telescopes to enhance our visual reach. Such is how technology has become a part of our exoskeletons, allowing us to push beyond our biological limitations.

In other words, you are already a cyborg. You have been all along.

Such an abstract definition of cyborgs is both relevant and thought-provoking. But it won’t stay abstract for much longer. The past few years have seen remarkable developments in both the hardware and software of brain-machine interfaces. Experts are designing more intricate electrodes while programming better algorithms to interpret the neural signals. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate purely through brainwaves. Technologists like Ray Kurzweil believe that by 2030 we will connect the neocortex of our brains to the cloud via nanobots.

Given these trends, humans will continue to be increasingly cyborg-like. Our future schools may not necessarily educate people as we are today, but rather will be educating a new species of human-machine hybrid.

Wisdom-Based Education
Whether you take an abstract or literal definition of a cyborg, we need to completely revamp our educational models. Even if you don’t buy into the scenario where humans integrate powerful brain-machine interfaces into our minds, there is still a desperate need for wisdom-based education to equip current generations to tackle 21st-century issues.

With an emphasis on isolated subjects, standardized assessments, and content knowledge, our current educational models were designed for the industrial era, with the intended goal of creating masses of efficient factory workers—not to empower critical thinkers, innovators, or wise cyborgs.

Currently, the goal of higher education is to provide students with the degree that society tells them they need, and ostensibly to prepare them for the workforce. In contrast, Lombardo and Blackwood argue that wisdom should be the central goal of higher education, and they elaborate on how we can practically make this happen. Lombardo has developed a comprehensive two-year foundational education program for incoming university students aimed at the development of wisdom.

What does such an educational model look like? Lombardo and Blackwood break wisdom down into individual traits and capacities, each of which can be developed and measured independently or in combination with others. The authors lay out an expansive list of traits that can influence our decision-making as we strive to tackle global challenges and pave a more exciting future. These include big-picture thinking, curiosity, wonder, compassion, self-transcendence, love of learning, optimism, and courage.

As the authors point out, “given the complex and transforming nature of the world we live in, the development of wisdom provides a holistic, perspicacious, and ethically informed foundation for understanding the world, identifying its critical problems and positive opportunities, and constructively addressing its challenges.”

After all, many of the challenges we see in our world today boil down to out-dated ways of thinking, be they regressive mindsets, superficial value systems, or egocentric mindsets. The development of wisdom would immunize future societies against such debilitating values; imagine what our world would be like if wisdom was ingrained in all leaders and participating members of society.

The Wise Cyborg
Lombardo and Blackwood invite us to imagine how the wise cyborgs of the future would live their lives. What would happen if the powerful human-machine hybrids of tomorrow were also purpose-driven, compassionate, and ethical?

They would perceive the evolving digital world through a lens of wonder, awe, and curiosity. They would use digital information as a tool for problem-solving and a source of infinite knowledge. They would leverage immersive mediums like virtual reality to enhance creative expression and experimentation. They would continue to adapt and thrive in an unpredictable world of accelerating change.

Our media often depict a dystopian future for our species. It is worth considering a radically positive yet plausible scenario where instead of the machines taking over, we converge with them into wise cyborgs. This is just a glimpse of what is possible if we combine transcendent wisdom with powerful exponential technologies.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#434151 Life-or-Death Algorithms: The Black Box ...

When it comes to applications for machine learning, few can be more widely hyped than medicine. This is hardly surprising: it’s a huge industry that generates a phenomenal amount of data and revenue, where technological advances can improve or save the lives of millions of people. Hardly a week passes without a study that suggests algorithms will soon be better than experts at detecting pneumonia, or Alzheimer’s—diseases in complex organs ranging from the eye to the heart.

The problems of overcrowded hospitals and overworked medical staff plague public healthcare systems like Britain’s NHS and lead to rising costs for private healthcare systems. Here, again, algorithms offer a tantalizing solution. How many of those doctor’s visits really need to happen? How many could be replaced by an interaction with an intelligent chatbot—especially if it can be combined with portable diagnostic tests, utilizing the latest in biotechnology? That way, unnecessary visits could be reduced, and patients could be diagnosed and referred to specialists more quickly without waiting for an initial consultation.

As ever with artificial intelligence algorithms, the aim is not to replace doctors, but to give them tools to reduce the mundane or repetitive parts of the job. With an AI that can examine thousands of scans in a minute, the “dull drudgery” is left to machines, and the doctors are freed to concentrate on the parts of the job that require more complex, subtle, experience-based judgement of the best treatments and the needs of the patient.

High Stakes
But, as ever with AI algorithms, there are risks involved with relying on them—even for tasks that are considered mundane. The problems of black-box algorithms that make inexplicable decisions are bad enough when you’re trying to understand why that automated hiring chatbot was unimpressed by your job interview performance. In a healthcare context, where the decisions made could mean life or death, the consequences of algorithmic failure could be grave.

A new paper in Science Translational Medicine, by Nicholson Price, explores some of the promises and pitfalls of using these algorithms in the data-rich medical environment.

Neural networks excel at churning through vast quantities of training data and making connections, absorbing the underlying patterns or logic for the system in hidden layers of linear algebra; whether it’s detecting skin cancer from photographs or learning to write in pseudo-Shakespearean script. They are terrible, however, at explaining the underlying logic behind the relationships that they’ve found: there is often little more than a string of numbers, the statistical “weights” between the layers. They struggle to distinguish between correlation and causation.

This raises interesting dilemmas for healthcare providers. The dream of big data in medicine is to feed a neural network on “huge troves of health data, finding complex, implicit relationships and making individualized assessments for patients.” What if, inevitably, such an algorithm proves to be unreasonably effective at diagnosing a medical condition or prescribing a treatment, but you have no scientific understanding of how this link actually works?

Too Many Threads to Unravel?
The statistical models that underlie such neural networks often assume that variables are independent of each other, but in a complex, interacting system like the human body, this is not always the case.

In some ways, this is a familiar concept in medical science—there are many phenomena and links which have been observed for decades but are still poorly understood on a biological level. Paracetamol is one of the most commonly-prescribed painkillers, but there’s still robust debate about how it actually works. Medical practitioners may be keen to deploy whatever tool is most effective, regardless of whether it’s based on a deeper scientific understanding. Fans of the Copenhagen interpretation of quantum mechanics might spin this as “Shut up and medicate!”

But as in that field, there’s a debate to be had about whether this approach risks losing sight of a deeper understanding that will ultimately prove more fruitful—for example, for drug discovery.

Away from the philosophical weeds, there are more practical problems: if you don’t understand how a black-box medical algorithm is operating, how should you approach the issues of clinical trials and regulation?

Price points out that, in the US, the “21st-Century Cures Act” allows the FDA to regulate any algorithm that analyzes images, or doesn’t allow a provider to review the basis for its conclusions: this could completely exclude “black-box” algorithms of the kind described above from use.

Transparency about how the algorithm functions—the data it looks at, and the thresholds for drawing conclusions or providing medical advice—may be required, but could also conflict with the profit motive and the desire for secrecy in healthcare startups.

One solution might be to screen algorithms that can’t explain themselves, or don’t rely on well-understood medical science, from use before they enter the healthcare market. But this could prevent people from reaping the benefits that they can provide.

Evaluating Algorithms
New healthcare algorithms will be unable to do what physicists did with quantum mechanics, and point to a track record of success, because they will not have been deployed in the field. And, as Price notes, many algorithms will improve as they’re deployed in the field for a greater amount of time, and can harvest and learn from the performance data that’s actually used. So how can we choose between the most promising approaches?

Creating a standardized clinical trial and validation system that’s equally valid across algorithms that function in different ways, or use different input or training data, will be a difficult task. Clinical trials that rely on small sample sizes, such as for algorithms that attempt to personalize treatment to individuals, will also prove difficult. With a small sample size and little scientific understanding, it’s hard to tell whether the algorithm succeeded or failed because it’s bad at its job or by chance.

Add learning into the mix and the picture gets more complex. “Perhaps more importantly, to the extent that an ideal black-box algorithm is plastic and frequently updated, the clinical trial validation model breaks down further, because the model depends on a static product subject to stable validation.” As Price describes, the current system for testing and validation of medical products needs some adaptation to deal with this new software before it can successfully test and validate the new algorithms.

Striking a Balance
The story in healthcare reflects the AI story in so many other fields, and the complexities involved perhaps illustrate why even an illustrious company like IBM appears to be struggling to turn its famed Watson AI into a viable product in the healthcare space.

A balance must be struck, both in our rush to exploit big data and the eerie power of neural networks, and to automate thinking. We must be aware of the biases and flaws of this approach to problem-solving: to realize that it is not a foolproof panacea.

But we also need to embrace these technologies where they can be a useful complement to the skills, insights, and deeper understanding that humans can provide. Much like a neural network, our industries need to train themselves to enhance this cooperation in the future.

Image Credit: Connect world / Shutterstock.com Continue reading

Posted in Human Robots

#433895 Sci-Fi Movies Are the Secret Weapon That ...

If there’s one line that stands the test of time in Steven Spielberg’s 1993 classic Jurassic Park, it’s probably Jeff Goldblum’s exclamation, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.”

Goldblum’s character, Dr. Ian Malcolm, was warning against the hubris of naively tinkering with dinosaur DNA in an effort to bring these extinct creatures back to life. Twenty-five years on, his words are taking on new relevance as a growing number of scientists and companies are grappling with how to tread the line between “could” and “should” in areas ranging from gene editing and real-world “de-extinction” to human augmentation, artificial intelligence and many others.

Despite growing concerns that powerful emerging technologies could lead to unexpected and wide-ranging consequences, innovators are struggling with how to develop beneficial new products while being socially responsible. Part of the answer could lie in watching more science fiction movies like Jurassic Park.

Hollywood Lessons in Societal Risks
I’ve long been interested in how innovators and others can better understand the increasingly complex landscape around the social risks and benefits associated with emerging technologies. Growing concerns over the impacts of tech on jobs, privacy, security and even the ability of people to live their lives without undue interference highlight the need for new thinking around how to innovate responsibly.

New ideas require creativity and imagination, and a willingness to see the world differently. And this is where science fiction movies can help.

Sci-fi flicks are, of course, notoriously unreliable when it comes to accurately depicting science and technology. But because their plots are often driven by the intertwined relationships between people and technology, they can be remarkably insightful in revealing social factors that affect successful and responsible innovation.

This is clearly seen in Jurassic Park. The movie provides a surprisingly good starting point for thinking about the pros and cons of modern-day genetic engineering and the growing interest in bringing extinct species back from the dead. But it also opens up conversations around the nature of complex systems that involve both people and technology, and the potential dangers of “permissionless” innovation that’s driven by power, wealth and a lack of accountability.

Similar insights emerge from a number of other movies, including Spielberg’s 2002 film “Minority Report”—which presaged a growing capacity for AI-enabled crime prediction and the ethical conundrums it’s raising—as well as the 2014 film Ex Machina.

As with Jurassic Park, Ex Machina centers around a wealthy and unaccountable entrepreneur who is supremely confident in his own abilities. In this case, the technology in question is artificial intelligence.

The movie tells a tale of an egotistical genius who creates a remarkable intelligent machine—but he lacks the awareness to recognize his limitations and the risks of what he’s doing. It also provides a chilling insight into potential dangers of creating machines that know us better than we know ourselves, while not being bound by human norms or values.

The result is a sobering reminder of how, without humility and a good dose of humanity, our innovations can come back to bite us.

The technologies in Jurassic Park, Minority Report, and Ex Machina lie beyond what is currently possible. Yet these films are often close enough to emerging trends that they help reveal the dangers of irresponsible, or simply naive, innovation. This is where these and other science fiction movies can help innovators better understand the social challenges they face and how to navigate them.

Real-World Problems Worked Out On-Screen
In a recent op-ed in the New York Times, journalist Kara Swisher asked, “Who will teach Silicon Valley to be ethical?” Prompted by a growing litany of socially questionable decisions amongst tech companies, Swisher suggests that many of them need to grow up and get serious about ethics. But ethics alone are rarely enough. It’s easy for good intentions to get swamped by fiscal pressures and mired in social realities.

Elon Musk has shown that brilliant tech innovators can take ethical missteps along the way. Image Credit:AP Photo/Chris Carlson
Technology companies increasingly need to find some way to break from business as usual if they are to become more responsible. High-profile cases involving companies like Facebook and Uber as well as Tesla’s Elon Musk have highlighted the social as well as the business dangers of operating without fully understanding the consequences of people-oriented actions.

Many more companies are struggling to create socially beneficial technologies and discovering that, without the necessary insights and tools, they risk blundering about in the dark.

For instance, earlier this year, researchers from Google and DeepMind published details of an artificial intelligence-enabled system that can lip-read far better than people. According to the paper’s authors, the technology has enormous potential to improve the lives of people who have trouble speaking aloud. Yet it doesn’t take much to imagine how this same technology could threaten the privacy and security of millions—especially when coupled with long-range surveillance cameras.

Developing technologies like this in socially responsible ways requires more than good intentions or simply establishing an ethics board. People need a sophisticated understanding of the often complex dynamic between technology and society. And while, as Mozilla’s Mitchell Baker suggests, scientists and technologists engaging with the humanities can be helpful, it’s not enough.

An Easy Way into a Serious Discipline
The “new formulation” of complementary skills Baker says innovators desperately need already exists in a thriving interdisciplinary community focused on socially responsible innovation. My home institution, the School for the Future of Innovation in Society at Arizona State University, is just one part of this.

Experts within this global community are actively exploring ways to translate good ideas into responsible practices. And this includes the need for creative insights into the social landscape around technology innovation, and the imagination to develop novel ways to navigate it.

People love to come together as a movie audience.Image credit: The National Archives UK, CC BY 4.0
Here is where science fiction movies become a powerful tool for guiding innovators, technology leaders and the companies where they work. Their fictional scenarios can reveal potential pitfalls and opportunities that can help steer real-world decisions toward socially beneficial and responsible outcomes, while avoiding unnecessary risks.

And science fiction movies bring people together. By their very nature, these films are social and educational levelers. Look at who’s watching and discussing the latest sci-fi blockbuster, and you’ll often find a diverse cross-section of society. The genre can help build bridges between people who know how science and technology work, and those who know what’s needed to ensure they work for the good of society.

This is the underlying theme in my new book Films from the Future: The Technology and Morality of Sci-Fi Movies. It’s written for anyone who’s curious about emerging trends in technology innovation and how they might potentially affect society. But it’s also written for innovators who want to do the right thing and just don’t know where to start.

Of course, science fiction films alone aren’t enough to ensure socially responsible innovation. But they can help reveal some profound societal challenges facing technology innovators and possible ways to navigate them. And what better way to learn how to innovate responsibly than to invite some friends round, open the popcorn and put on a movie?

It certainly beats being blindsided by risks that, with hindsight, could have been avoided.

Andrew Maynard, Director, Risk Innovation Lab, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Fred Mantel / Shutterstock.com Continue reading

Posted in Human Robots

#433750 Boston Dynamics’ Atlas Robot Shows ...

The agile humanoid is learning to use its whole body to leap higher than ever Continue reading

Posted in Human Robots