Tag Archives: since
#435691 Squeezing Rocket Fuel From Moon Rocks
Illustration: John MacNeill
Engineers and Architects Are Already Designing Lunar Habitats
Squeezing Rocket Fuel From Moon Rocks
Robots Will Navigate the Moon With Maps They Make Themselves
Kim Stanley Robinson Built a Moon Base in His Mind
The most valuable natural resource on the moon may be water. In addition to sustaining lunar colonists, it could also be broken down into its constituent elements—hydrogen and oxygen—and used to make rocket propellant.
Although the ancients called the dark areas on the moon maria (Latin for “seas”), it has long been clear that liquid water can’t exist on the lunar surface, where it would swiftly evaporate. Since the 1960s, though, scientists have hypothesized that the moon indeed harbors water, in the form of ice. Because the moon has a very small axial tilt—just 1.5 degrees—the floors of many polar craters remain in perpetual darkness. Water could thus condense and survive in such polar “cold traps,” where it might one day be mined.
1/5
Water Water Everywhere: Finding rich deposits of ice and extracting it should be possible but will be technically challenging for lunar settlers. Illustration: John MacNeill
2/5
Mapping the Moon: Several lunar missions have produced strong evidence of water ice. A NASA instrument called the Moon Mineralogy Mapper (M3) found indications of water ice on the permanently shadowed floors of some polar craters. However, the measurements suggest that only a small fraction of cold traps contain ice [colored areas], and that the ice is probably mixed with lunar regolith. Data source.
3/5
Rover-Mounted Drill: The most straightforward strategy for extracting water from polar ice deposits uses a rover-mounted drill. Honeybee Robotics has designed a Planetary Volatiles Extractor with a heated auger, which would cause any water ice in the drilled regolith to vaporize. That vapor would then move through a tube to a condenser unit, where it would turn back into ice. Illustration: John MacNeill
4/5
Thermal Mining: A more ambitious scheme for extracting water from the moon is “thermal mining.” Researchers at the Colorado School of Mines have proposed redirecting the sun’s rays , using heliostats mounted on a crater rim. Water trapped in the regolith would turn into vapor that would be collected in a large tent, then vented into refrigerated cold traps, where it would condense as pure water ice. Illustration: John MacNeill
5/5
Compressed-Gas Transport: To produce rocket fuel from water ice would require an electrolyzer to break the water into hydrogen and oxygen, which would then be compressed and stored for later use. In situ production would also require vehicles to transport the processed fuel to rocket pads. Illustration: John MacNeill
Previous
Next Continue reading
#435674 MIT Future of Work Report: We ...
Robots aren’t going to take everyone’s jobs, but technology has already reshaped the world of work in ways that are creating clear winners and losers. And it will continue to do so without intervention, says the first report of MIT’s Task Force on the Work of the Future.
The supergroup of MIT academics was set up by MIT President Rafael Reif in early 2018 to investigate how emerging technologies will impact employment and devise strategies to steer developments in a positive direction. And the headline finding from their first publication is that it’s not the quantity of jobs we should be worried about, but the quality.
Widespread press reports of a looming “employment apocalypse” brought on by AI and automation are probably wide of the mark, according to the authors. Shrinking workforces as developed countries age and outstanding limitations in what machines can do mean we’re unlikely to have a shortage of jobs.
But while unemployment is historically low, recent decades have seen a polarization of the workforce as the number of both high- and low-skilled jobs have grown at the expense of the middle-skilled ones, driving growing income inequality and depriving the non-college-educated of viable careers.
This is at least partly attributable to the growth of digital technology and automation, the report notes, which are rendering obsolete many middle-skilled jobs based around routine work like assembly lines and administrative support.
That leaves workers to either pursue high-skilled jobs that require deep knowledge and creativity, or settle for low-paid jobs that rely on skills—like manual dexterity or interpersonal communication—that are still beyond machines, but generic to most humans and therefore not valued by employers. And the growth of emerging technology like AI and robotics is only likely to exacerbate the problem.
This isn’t the first report to note this trend. The World Bank’s 2016 World Development Report noted how technology is causing a “hollowing out” of labor markets. But the MIT report goes further in saying that the cause isn’t simply technology, but the institutions and policies we’ve built around it.
The motivation for introducing new technology is broadly assumed to be to increase productivity, but the authors note a rarely-acknowledged fact: “Not all innovations that raise productivity displace workers, and not all innovations that displace workers substantially raise productivity.”
Examples of the former include computer-aided design software that makes engineers and architects more productive, while examples of the latter include self-service checkouts and automated customer support that replace human workers, often at the expense of a worse customer experience.
While the report notes that companies have increasingly adopted the language of technology augmenting labor, in reality this has only really benefited high-skilled workers. For lower-skilled jobs the motivation is primarily labor cost savings, which highlights the other major force shaping technology’s impact on employment: shareholder capitalism.
The authors note that up until the 1980s, increasing productivity resulted in wage growth across the economic spectrum, but since then average wage growth has failed to keep pace and gains have dramatically skewed towards the top earners.
The report shies away from directly linking this trend to the birth of Reaganomics (something others have been happy to do), but it notes that American veneration of the shareholder as the primary stakeholder in a business and tax policies that incentivize investment in capital rather than labor have exacerbated the negative impacts technology can have on employment.
That means the current focus on re-skilling workers to thrive in the new economy is a necessary, but not sufficient, solution to the disruptive impact technology is having on work, the authors say.
Alongside significant investment in education, fiscal policies need to be re-balanced away from subsidizing investment in physical capital and towards boosting investment in human capital, the authors write, and workers need to have a greater say in corporate decision-making.
The authors point to other developed economies where productivity growth, income growth, and equality haven’t become so disconnected thanks to investments in worker skills, social safety nets, and incentives to invest in human capital. Whether such a radical reshaping of US economic policy is achievable in today’s political climate remains to be seen, but the authors conclude with a call to arms.
“The failure of the US labor market to deliver broadly shared prosperity despite rising productivity is not an inevitable byproduct of current technologies or free markets,” they write. “We can and should do better.”
Image Credit: Simon Abrams / Unsplash/a> Continue reading
#435664 Swarm Robots Mimic Ant Jaws to Flip and ...
Small robots are appealing because they’re simple, cheap, and it’s easy to make a lot of them. Unfortunately, being simple and cheap means that each robot individually can’t do a whole lot. To make up for this, you can do what insects do—leverage that simplicity and low-cost to just make a huge swarm of simple robots, and together, they can cooperate to carry out relatively complex tasks.
Using insects as an example does set a bit of an unfair expectation for the poor robots, since insects are (let’s be honest) generally smarter and much more versatile than a robot on their scale could ever hope to be. Most robots with insect-like capabilities (like DASH and its family) are really too big and complex to be turned into swarms, because to make a vast amount of small robots, things like motors aren’t going to work because they’re too expensive.
The question, then, is to how to make a swarm of inexpensive small robots with insect-like mobility that don’t need motors to get around, and Jamie Paik’s Reconfigurable Robotics Lab at EPFL has an answer, inspired by trap-jaw ants.
Let’s talk about trap-jaw ants for just a second, because they’re insane. You can read this 2006 paper about them if you’re particularly interested in insane ants (and who isn’t!), but if you just want to hear the insane bit, it’s that trap-jaw ants can fire themselves into the air by biting the ground (!). In just 0.06 millisecond, their half-millimeter long mandibles can close at a top speed of 64 meters per second, which works out to an acceleration of about 100,000 g’s. Biting the ground causes the ant’s head to snap back with a force of 300 times the body weight of the ant itself, which launches the ant upwards. The ants can fly 8 centimeters vertically, and up to 15 cm horizontally—this is a lot, for an ant that’s just a few millimeters long.
Trap-jaw ants can fire themselves into the air by biting the ground, causing the ant’s head to snap back with a force of 300 times the body weight of the ant itself
EPFL’s robots, called Tribots, look nothing at all like trap-jaw ants, which personally I am fine with. They’re about 5 cm tall, weighing 10 grams each, and can be built on a flat sheet, and then folded into a tripod shape, origami-style. Or maybe it’s kirigami, because there’s some cutting involved. The Tribots are fully autonomous, meaning they have onboard power and control, including proximity sensors that allow them to detect objects and avoid them.
Photo: Marc Delachaux/EPFL
EPFL researchers Zhenishbek Zhakypov and Jamie Paik.
Avoiding objects is where the trap-jaw ants come in. Using two different shape-memory actuators (a spring and a latch, similar to how the ant’s jaw works), the Tribots can move around using a bunch of different techniques that can adapt to the terrain that they’re on, including:
Vertical jumping for height
Horizontal jumping for distance
Somersault jumping to clear obstacles
Walking on textured terrain with short hops (called “flic-flac” walking)
Crawling on flat surfaces
Here’s the robot in action:
Tribot’s maximum vertical jump is 14 cm (2.5 times its height), and horizontally it can jump about 23 cm (almost 4 times its length). Tribot is actually quite efficient in these movements, with a cost of transport much lower than similarly-sized robots, on par with insects themselves.
Working together, small groups of Tribots can complete tasks that a single robot couldn’t do alone. One example is pushing a heavy object a set distance. It turns out that you need five Tribots for this task—a leader robot, two worker robots, a monitor robot to measure the distance that the object has been pushed, and then a messenger robot to relay communications around the obstacle.
Image: EPFL
Five Tribots collaborate to move an object to a desired position, using coordination between a leader, two workers, a monitor, and a messenger robot. The leader orders the two worker robots to push the object while the monitor measures the relative position of the object. As the object blocks the two-way link between the leader and the monitor, the messenger maintains the communication link.
The researchers acknowledge that the current version of the hardware is limited in pretty much every way (mobility, sensing, and computation), but it does a reasonable job of demonstrating what’s possible with the concept. The plan going forward is to automate fabrication in order to “enable on-demand, ’push-button-manufactured’” robots.
“Designing minimal and scalable insect-inspired multi-locomotion millirobots,” by Zhenishbek Zhakypov, Kazuaki Mori, Koh Hosoda, and Jamie Paik from EPFL and Osaka University, is published in the current issue of Nature.
[ RRL ] via [ EPFL ] Continue reading