Tag Archives: show

#431168 Audrey Hepburn’s smiling humanoid ...

Meet Sophia, a humanoid robot that looks a bit like Audrey Hepburn and has sixty facial expressions, including to smile. She can also interact with humans, and her creator’s goal is to make machines smarter than humans, have the ability … Continue reading

Posted in Human Robots

#431203 Could We Build a Blade Runner-Style ...

The new Blade Runner sequel will return us to a world where sophisticated androids made with organic body parts can match the strength and emotions of their human creators. As someone who builds biologically inspired robots, I’m interested in whether our own technology will ever come close to matching the “replicants” of Blade Runner 2049.
The reality is that we’re a very long way from building robots with human-like abilities. But advances in so-called soft robotics show a promising way forward for technology that could be a new basis for the androids of the future.
From a scientific point of view, the real challenge is replicating the complexity of the human body. Each one of us is made up of millions and millions of cells, and we have no clue how we can build such a complex machine that is indistinguishable from us humans. The most complex machines today, for example the world’s largest airliner, the Airbus A380, are composed of millions of parts. But in order to match the complexity level of humans, we would need to scale this complexity up about a million times.
There are currently three different ways that engineering is making the border between humans and robots more ambiguous. Unfortunately, these approaches are only starting points and are not yet even close to the world of Blade Runner.
There are human-like robots built from scratch by assembling artificial sensors, motors, and computers to resemble the human body and motion. However, extending the current human-like robot would not bring Blade Runner-style androids closer to humans, because every artificial component, such as sensors and motors, are still hopelessly primitive compared to their biological counterparts.
There is also cyborg technology, where the human body is enhanced with machines such as robotic limbs and wearable and implantable devices. This technology is similarly very far away from matching our own body parts.
Finally, there is the technology of genetic manipulation, where an organism’s genetic code is altered to modify that organism’s body. Although we have been able to identify and manipulate individual genes, we still have a limited understanding of how an entire human emerges from genetic code. As such, we don’t know the degree to which we can actually program code to design everything we wish.
Soft robotics: a way forward?
But we might be able to move robotics closer to the world of Blade Runner by pursuing other technologies and, in particular, by turning to nature for inspiration. The field of soft robotics is a good example. In the last decade or so, robotics researchers have been making considerable efforts to make robots soft, deformable, squishable, and flexible.
This technology is inspired by the fact that 90% of the human body is made from soft substances such as skin, hair, and tissues. This is because most of the fundamental functions in our body rely on soft parts that can change shape, from the heart and lungs pumping fluid around our body to the eye lenses generating signals from their movement. Cells even change shape to trigger division, self-healing and, ultimately, the evolution of the body.
The softness of our bodies is the origin of all their functionality needed to stay alive. So being able to build soft machines would at least bring us a step closer to the robotic world of Blade Runner. Some of the recent technological advances include artificial hearts made out of soft functional materials that are pumping fluid through deformation. Similarly, soft, wearable gloves can help make hand grasping stronger. And “epidermal electronics” has enabled us to tattoo electronic circuits onto our biological skins.
Softness is the keyword that brings humans and technologies closer together. Sensors, motors, and computers are all of a sudden integrated into human bodies once they became soft, and the border between us and external devices becomes ambiguous, just like soft contact lenses became part of our eyes.
Nevertheless, the hardest challenge is how to make individual parts of a soft robot body physically adaptable by self-healing, growing, and differentiating. After all, every part of a living organism is also alive in biological systems in order to make our bodies totally adaptable and evolvable, the function of which could make machines totally indistinguishable from ourselves.
It is impossible to predict when the robotic world of Blade Runner might arrive, and if it does, it will probably be very far in the future. But as long as the desire to build machines indistinguishable from humans is there, the current trends of robotic revolution could make it possible to achieve that dream.
This article was originally published on The Conversation. Read the original article.
Image Credit: Dariush M / Shutterstock.com Continue reading

Posted in Human Robots

#431130 Innovative Collaborative Robot sets new ...

Press Release by: HMK
As the trend of Industry 4.0 takes the world by storm, collaborative robots and smart factories are becoming the latest hot topic. At this year’s PPMA show, HMK will demonstrate the world’s first collaborative robot with built-in vision recognition from Techman Robot.
The new TM5 Cobot from HMK merges systems that usually function separately in conventional robots, the Cobot is the only collaborative robot to incorporate simple programming, a fully integrated vision system and the latest safety standards in a single unit.
With capabilities including direction identification, self-calibration of coordinates and visual task operation enabled by built-in vision, the TM5 can fine-tune in accordance with actual conditions at any time to accomplish complex processes that used to demand the integration of various equipment; it requires less manpower and time to recalibrate when objects or coordinates move and thus significantly improves flexibility as well as reducing maintenance cost.
Photo Credit: hmkdirect.com
Simple.Programming could not be easier. Using an easy to use flow chart program, TM-Flow will run on any tablet, PC or laptop over a wireless link to the TM control box, complex automation tasks can be realised in minutes. Clever teach functions and wizards also allow hand guided programming and easy incorporation of operation such as palletising, de-palletising and conveyor tracking.
SmartThe TM5 is the only cobot to feature a full colour vision package as standard mounted on the wrist of the robot, which in turn, is fully supported within TM-Flow. The result allows users to easily integrate the robot to the application, without complex tooling and the need for expensive add-on vision hardware and programming.
SafeThe recently CE marked TM5 now incorporates the new ISO/TS 15066 guidelines on safety in collaborative robots systems, which covers four types of collaborative operation:a) Safety-rated monitored stopb) Hand guidingc) Speed and separation monitoringd) Power and force limitingSafety hardware inputs also allow the Cobot to be integrated to wider safety systems.
When you add EtherCat and Modbus network connectivity and I/O expansion options, IoT ready network access and ex-stock delivery, the TM5 sets a new benchmark for this evolving robotics sector.
The TM5 is available with two payload options, 4Kg and 6Kg with a reach of 900mm and 700mm respectively, both with positioning capabilities to a repeatability of 0.05mm.
HMK will be showcasing the new TM5 Cobot at this year’s PPMA show at the NEC, visit stand F102 to get hands on the with the Cobot and experience the innovative and intuitive graphic HMI and hand-guiding features.
For more information contact HMK on 01260 279411, email sales@hmkdirect.com or visit www.hmkdirect.com
Photo Credit: hmkdirect.com
The post Innovative Collaborative Robot sets new benchmark appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431081 How the Intelligent Home of the Future ...

As Dorothy famously said in The Wizard of Oz, there’s no place like home. Home is where we go to rest and recharge. It’s familiar, comfortable, and our own. We take care of our homes by cleaning and maintaining them, and fixing things that break or go wrong.
What if our homes, on top of giving us shelter, could also take care of us in return?
According to Chris Arkenberg, this could be the case in the not-so-distant future. As part of Singularity University’s Experts On Air series, Arkenberg gave a talk called “How the Intelligent Home of The Future Will Care For You.”
Arkenberg is a research and strategy lead at Orange Silicon Valley, and was previously a research fellow at the Deloitte Center for the Edge and a visiting researcher at the Institute for the Future.
Arkenberg told the audience that there’s an evolution going on: homes are going from being smart to being connected, and will ultimately become intelligent.
Market Trends
Intelligent home technologies are just now budding, but broader trends point to huge potential for their growth. We as consumers already expect continuous connectivity wherever we go—what do you mean my phone won’t get reception in the middle of Yosemite? What do you mean the smart TV is down and I can’t stream Game of Thrones?
As connectivity has evolved from a privilege to a basic expectation, Arkenberg said, we’re also starting to have a better sense of what it means to give up our data in exchange for services and conveniences. It’s so easy to click a few buttons on Amazon and have stuff show up at your front door a few days later—never mind that data about your purchases gets recorded and aggregated.
“Right now we have single devices that are connected,” Arkenberg said. “Companies are still trying to show what the true value is and how durable it is beyond the hype.”

Connectivity is the basis of an intelligent home. To take a dumb object and make it smart, you get it online. Belkin’s Wemo, for example, lets users control lights and appliances wirelessly and remotely, and can be paired with Amazon Echo or Google Home for voice-activated control.
Speaking of voice-activated control, Arkenberg pointed out that physical interfaces are evolving, too, to the point that we’re actually getting rid of interfaces entirely, or transitioning to ‘soft’ interfaces like voice or gesture.
Drivers of change
Consumers are open to smart home tech and companies are working to provide it. But what are the drivers making this tech practical and affordable? Arkenberg said there are three big ones:
Computation: Computers have gotten exponentially more powerful over the past few decades. If it wasn’t for processors that could handle massive quantities of information, nothing resembling an Echo or Alexa would even be possible. Artificial intelligence and machine learning are powering these devices, and they hinge on computing power too.
Sensors: “There are more things connected now than there are people on the planet,” Arkenberg said. Market research firm Gartner estimates there are 8.4 billion connected things currently in use. Wherever digital can replace hardware, it’s doing so. Cheaper sensors mean we can connect more things, which can then connect to each other.
Data: “Data is the new oil,” Arkenberg said. “The top companies on the planet are all data-driven giants. If data is your business, though, then you need to keep finding new ways to get more and more data.” Home assistants are essentially data collection systems that sit in your living room and collect data about your life. That data in turn sets up the potential of machine learning.
Colonizing the Living Room
Alexa and Echo can turn lights on and off, and Nest can help you be energy-efficient. But beyond these, what does an intelligent home really look like?
Arkenberg’s vision of an intelligent home uses sensing, data, connectivity, and modeling to manage resource efficiency, security, productivity, and wellness.
Autonomous vehicles provide an interesting comparison: they’re surrounded by sensors that are constantly mapping the world to build dynamic models to understand the change around itself, and thereby predict things. Might we want this to become a model for our homes, too? By making them smart and connecting them, Arkenberg said, they’d become “more biological.”
There are already several products on the market that fit this description. RainMachine uses weather forecasts to adjust home landscape watering schedules. Neurio monitors energy usage, identifies areas where waste is happening, and makes recommendations for improvement.
These are small steps in connecting our homes with knowledge systems and giving them the ability to understand and act on that knowledge.
He sees the homes of the future being equipped with digital ears (in the form of home assistants, sensors, and monitoring devices) and digital eyes (in the form of facial recognition technology and machine vision to recognize who’s in the home). “These systems are increasingly able to interrogate emotions and understand how people are feeling,” he said. “When you push more of this active intelligence into things, the need for us to directly interface with them becomes less relevant.”
Could our homes use these same tools to benefit our health and wellness? FREDsense uses bacteria to create electrochemical sensors that can be applied to home water systems to detect contaminants. If that’s not personal enough for you, get a load of this: ClinicAI can be installed in your toilet bowl to monitor and evaluate your biowaste. What’s the point, you ask? Early detection of colon cancer and other diseases.
What if one day, your toilet’s biowaste analysis system could link up with your fridge, so that when you opened it it would tell you what to eat, and how much, and at what time of day?
Roadblocks to intelligence
“The connected and intelligent home is still a young category trying to establish value, but the technological requirements are now in place,” Arkenberg said. We’re already used to living in a world of ubiquitous computation and connectivity, and we have entrained expectations about things being connected. For the intelligent home to become a widespread reality, its value needs to be established and its challenges overcome.
One of the biggest challenges will be getting used to the idea of continuous surveillance. We’ll get convenience and functionality if we give up our data, but how far are we willing to go? Establishing security and trust is going to be a big challenge moving forward,” Arkenberg said.
There’s also cost and reliability, interoperability and fragmentation of devices, or conversely, what Arkenberg called ‘platform lock-on,’ where you’d end up relying on only one provider’s system and be unable to integrate devices from other brands.
Ultimately, Arkenberg sees homes being able to learn about us, manage our scheduling and transit, watch our moods and our preferences, and optimize our resource footprint while predicting and anticipating change.
“This is the really fascinating provocation of the intelligent home,” Arkenberg said. “And I think we’re going to start to see this play out over the next few years.”
Sounds like a home Dorothy wouldn’t recognize, in Kansas or anywhere else.
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots

#431078 This Year’s Awesome Robot Stories From ...

Each week we scour the web for great articles and fascinating advances across our core topics, from AI to biotech and the brain. But robots have a special place in our hearts. This week, we took a look back at 2017 so far and unearthed a few favorite robots for your reading and viewing pleasure.
Tarzan the Swinging Robot Could Be the Future of FarmingMariella Moon | Engadget“Tarzan will be able to swing over crops using its 3D-printed claws and parallel guy-wires stretched over fields. It will then take measurements and pictures of each plant with its built-in camera while suspended…While it may take some time to achieve that goal, the researchers plan to start testing the robot soon.”
Grasping Robots Compete to Rule Amazon’s Warehouses Tom Simonite | Wired“Robots able to help with so-called picking tasks would boost Amazon’s efficiency—and make it much less reliant on human workers. It’s why the company has invited a motley crew of mechanical arms, grippers, suction cups—and their human handlers—to Nagoya, Japan, this week to show off their manipulation skills.”
Robots Learn to Speak Body LanguageAlyssa Pagano | IEEE Spectrum“One notable feature of the OpenPose system is that it can track not only a person’s head, torso, and limbs but also individual fingers. To do that, the researchers used CMU’s Panoptic Studio, a dome lined with 500 cameras, where they captured body poses at a variety of angles and then used those images to build a data set.”
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
How This Japanese Robotics Master Is Building Better, More Human AndroidsHarry McCracken | Fast Company“On the tech side, making a robot look and behave like a person involves everything from electronics to the silicone Ishiguro’s team uses to simulate skin. ‘We have a technology to precisely control pneumatic actuators,’ he says, noting, as an example of what they need to re-create, that ‘the human shoulder has four degrees of freedom.’”
Stock Media provided by Besjunior / Pond5 Continue reading

Posted in Human Robots