Tag Archives: Should

#435159 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Can Now Beat Us at Multiplayer Games Too
Cade Metz | The New York Times
“DeepMind’s project is part of a broad effort to build artificial intelligence that can play enormously complex, three-dimensional video games, including Quake III, Dota 2 and StarCraft II. Many researchers believe that success in the virtual arena will eventually lead to automated systems with improved abilities in the real world.”

ROBOTICS
Tiny Robots Carry Stem Cells Through a Mouse
Emily Waltz | IEEE Spectrum
“Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper, published [May 29] in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.” [Video shows microbots navigating a microfluidic chip. MRI could not be used to image the mouse as the bots navigate magnetically.]

COMPUTING
How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
Emerging Technology From the arXiv | MIT Technology Review
“[Two researchers] have found a more efficient way for quantum computers to perform the code-breaking calculations, reducing the resources they require by orders of magnitude. Consequently, these machines are significantly closer to reality than anyone suspected.” [The arXiv is a pre-print server for research that has not yet been peer reviewed.]

AUTOMATION
Lyft Has Completed 55,000 Self Driving Rides in Las Vegas
Christine Fisher | Engadget
“One year ago, Lyft launched its self-driving ride service in Las Vegas. Today, the company announced its 30-vehicle fleet has made 55,000 trips. That makes it the largest commercial program of its kind in the US.”

TRANSPORTATION
Flying Car Startup Alaka’i Bets Hydrogen Can Outdo Batteries
Eric Adams | Wired
“Alaka’i says the final product will be able to fly for up to four hours and cover 400 miles on a single load of fuel, which can be replenished in 10 minutes at a hydrogen fueling station. It has built a functional, full-scale prototype that will make its first flight ‘imminently,’ a spokesperson says.”

ETHICS
The World Economic Forum Wants to Develop Global Rules for AI
Will Knight | MIT Technology Review
“This week, AI experts, politicians, and CEOs will gather to ask an important question: Can the United States, China, or anyone else agree on how artificial intelligence should be used and controlled?”

SPACE
Building a Rocket in a Garage to Take on SpaceX and Blue Origin
Jackson Ryan | CNET
“While billionaire entrepreneurs like SpaceX’s Elon Musk and Blue Origin’s Jeff Bezos push the boundaries of human spaceflight and exploration, a legion of smaller private startups around the world have been developing their own rocket technology to launch lighter payloads into orbit.”

Image Credit: Kevin Crosby / Unsplash Continue reading

Posted in Human Robots

#435145 How Big Companies Can Simultaneously Run ...

We live in the age of entrepreneurs. New startups seem to appear out of nowhere and challenge not only established companies, but entire industries. Where startup unicorns were once mythical creatures, they now seem abundant, not only increasing in numbers but also in the speed with which they can gain the minimum one-billion-dollar valuations to achieve this status.

But no matter how well things go for innovative startups, how many new success stories we hear, and how much space they take up in the media, the story that they are the best or only source of innovation isn’t entirely accurate.

Established organizations, or legacy organizations, can be incredibly innovative too. And while innovation is much more difficult in established organizations than in startups because they have much more complex systems—nobody is more likely to succeed in their innovation efforts than established organizations.

Unlike startups, established organizations have all the resources. They have money, customers, data, suppliers, partners, and infrastructure, which put them in a far better position to transform new ideas into concrete, value-creating, successful offerings than startups.

However, for established organizations, becoming an innovation champion in these times of rapid change requires new rules of engagement.

Many organizations commit the mistake of engaging in innovation as if it were a homogeneous thing that should be approached in the same way every time, regardless of its purpose. In my book, Transforming Legacy Organizations, I argue that innovation in established organizations must actually be divided into three different tracks: optimizing, augmenting, and mutating innovation.

All three are important, and to complicate matters further, organizations must execute all three types of innovation at the same time.

Optimizing Innovation
The first track is optimizing innovation. This type of innovation is the majority of what legacy organizations already do today. It is, metaphorically speaking, the extra blade on the razor. A razor manufacturer might launch a new razor that has not just three, but four blades, to ensure an even better, closer, and more comfortable shave. Then one or two years later, they say they are now launching a razor that has not only four, but five blades for an even better, closer, and more comfortable shave. That is optimizing innovation.

Adding extra blades on the razor is where the established player reigns.

No startup with so much as a modicum of sense would even try to beat the established company in this type of innovation. And this continuous optimization, both on the operational and customer facing sides, is important. In the short term. It pays the rent. But it’s far from enough. There are limits to how many blades a razor needs, and optimizing innovation only improves upon the past.

Augmenting Innovation
Established players must also go beyond optimization and prepare for the future through augmenting innovation.

The digital transformation projects that many organizations are initiating can be characterized as augmenting innovation. In the first instance, it is about upgrading core offerings and processes from analog to digital. Or, if you’re born digital, you’ve probably had to augment the core to become mobile-first. Perhaps you have even entered the next augmentation phase, which involves implementing artificial intelligence. Becoming AI-first, like the Amazons, Microsofts, Baidus, and Googles of the world, requires great technological advancements. And it’s difficult. But technology may, in fact, be a minor part of the task.

The biggest challenge for augmenting innovation is probably culture.

Only legacy organizations that manage to transform their cultures from status quo cultures—cultures with a preference for things as they are—into cultures full of incremental innovators can thrive in constant change.

To create a strong innovation culture, an organization needs to thoroughly understand its immune systems. These are the mechanisms that protect the organization and operate around the clock to keep it healthy and stable, just as the body’s immune system operates to keep the body healthy and stable. But in a rapidly changing world, many of these defense mechanisms are no longer appropriate and risk weakening organizations’ innovation power.

When talking about organizational immune systems, there is a clear tendency to simply point to the individual immune system, people’s unwillingness to change.

But this is too simplistic.

Of course, there is human resistance to change, but the organizational immune system, consisting of a company’s key performance indicators (KPIs), rewards systems, legacy IT infrastructure and processes, and investor and shareholder demands, is far more important. So is the organization’s societal immune system, such as legislative barriers, legacy customers and providers, and economic climate.

Luckily, there are many culture hacks that organizations can apply to strengthen their innovation cultures by upgrading their physical and digital workspaces, transforming their top-down work processes into decentralized, agile ones, and empowering their employees.

Mutating Innovation
Upgrading your core and preparing for the future by augmenting innovation is crucial if you want success in the medium term. But to win in the long run and be as or more successful 20 to 30 years from now, you need to invent the future, and challenge your core, through mutating innovation.

This requires involving radical innovators who have a bold focus on experimenting with that which is not currently understood and for which a business case cannot be prepared.

Here you must also physically move away from the core organization when you initiate and run such initiatives. This is sometimes called “innovation on the edges” because the initiatives will not have a chance at succeeding within the core. It will be too noisy as they challenge what currently exists—precisely what the majority of the organization’s employees are working to optimize or augment.

Forward-looking organizations experiment to mutate their core through “X divisions,” sometimes called skunk works or innovation labs.

Lowe’s Innovation Labs, for instance, worked with startups to build in-store robot assistants and zero-gravity 3D printers to explore the future. Mutating innovation might include pursuing partnerships across all imaginable domains or establishing brand new companies, rather than traditional business units, as we see automakers such as Toyota now doing to build software for autonomous vehicles. Companies might also engage in radical open innovation by sponsoring others’ ingenuity. Japan’s top airline ANA is exploring a future of travel that does not involve flying people from point A to point B via the ANA Avatar XPRIZE competition.

Increasing technological opportunities challenge the core of any organization but also create unprecedented potential. No matter what product, service, or experience you create, you can’t rest on your laurels. You have to bring yourself to a position where you have a clear strategy for optimizing, augmenting, and mutating your core and thus transforming your organization.

It’s not an easy job. But, hey, if it were easy, everyone would be doing it. Those who make it, on the other hand, will be the innovation champions of the future.

Image Credit: rock-the-stock / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#435140 This Week’s Awesome Stories From ...

GENETICS
Gene Therapy Might Have Its First Blockbuster
Antonio Regalado | MIT Technology Review
“…drug giant Novartis expects to win approval to launch what it says will be the first ‘blockbuster’ gene-replacement treatment. A blockbuster is any drug with more than $1 billion in sales each year. The treatment, called Zolgensma, is able to save infants born with spinal muscular atrophy (SMA) type 1, a degenerative disease that usually kills within two years.”

ARTIFICIAL INTELLIGENCE
AI Took a Test to Detect Lung Cancer. It Got an A.
Denise Grady | The New York Times
“Computers were as good or better than doctors at detecting tiny lung cancers on CT scans, in a study by researchers from Google and several medical centers. The technology is a work in progress, not ready for widespread use, but the new report, published Monday in the journal Nature Medicine, offers a glimpse of the future of artificial intelligence in medicine.”

ROBOTICS
The Rise and Reign of Starship, the World’s First Robotic Delivery Provider
Luke Dormehl | Digital Trends
“[Starship’s] delivery robots have travelled a combined 200,000 miles, carried out 50,000 deliveries, and been tested in over 100 cities in 20 countries. It is a regular fixture not just in multiple neighborhoods but also university campuses.”

SPACE
Elon Musk Just Ignited the Race to Build the Space Internet
Jonathan O’Callaghan | Wired
“It’s estimated that about 3.3 billion people lack access to the internet, but Elon Musk is trying to change that. On Thursday, May 23—after two cancelled launches the week before—SpaceX launched 60 Starlink satellites on a Falcon 9 rocket from Cape Canaveral, in Florida, as part of the firm’s mission to bring low-cost, high-speed internet to the world.”

VIRTUAL REALITY
The iPod of VR Is Here, and You Should Try It
Mark Wilson | Fast Company
“In nearly 15 years of writing about cutting-edge technology, I’ve never seen a single product line get so much better so fast. With [the Oculus] Quest, there are no PCs required. There are no wires to run. All you do is grab the cloth headset and pull it around your head.”

FUTURE OF FOOD
Impossible Foods’ Rising Empire of Almost Meat
Chris Ip | Engadget
“Impossible says it wants to ultimately create a parallel universe of ersatz animal products from steak to eggs. …Yet as Impossible ventures deeper into the culinary uncanny valley, it also needs society to discard a fundamental cultural idea that dates back millennia and accept a new truth: Meat doesn’t have to come from animals.”

LONGEVITY
Can We Live Longer but Stay Younger?
Adam Gopnik | The New Yorker
“With greater longevity, the quest to avoid the infirmities of aging is more urgent than ever.”

PRIVACY
Facial Recognition Has Already Reached Its Breaking Point
Lily Hay Newman | Wired
“As facial recognition technologies have evolved from fledgling projects into powerful software platforms, researchers and civil liberties advocates have been issuing warnings about the potential for privacy erosions. Those mounting fears came to a head Wednesday in Congress.”

Image Credit: Andrush / Shutterstock.com Continue reading

Posted in Human Robots

#435127 Teaching AI the Concept of ‘Similar, ...

As a human you instinctively know that a leopard is closer to a cat than a motorbike, but the way we train most AI makes them oblivious to these kinds of relations. Building the concept of similarity into our algorithms could make them far more capable, writes the author of a new paper in Science Robotics.

Convolutional neural networks have revolutionized the field of computer vision to the point that machines are now outperforming humans on some of the most challenging visual tasks. But the way we train them to analyze images is very different from the way humans learn, says Atsuto Maki, an associate professor at KTH Royal Institute of Technology.

“Imagine that you are two years old and being quizzed on what you see in a photo of a leopard,” he writes. “You might answer ‘a cat’ and your parents might say, ‘yeah, not quite but similar’.”

In contrast, the way we train neural networks rarely gives that kind of partial credit. They are typically trained to have very high confidence in the correct label and consider all incorrect labels, whether ”cat” or “motorbike,” equally wrong. That’s a mistake, says Maki, because ignoring the fact that something can be “less wrong” means you’re not exploiting all of the information in the training data.

Even when models are trained this way, there will be small differences in the probabilities assigned to incorrect labels that can tell you a lot about how well the model can generalize what it has learned to unseen data.

If you show a model a picture of a leopard and it gives “cat” a probability of five percent and “motorbike” one percent, that suggests it picked up on the fact that a cat is closer to a leopard than a motorbike. In contrast, if the figures are the other way around it means the model hasn’t learned the broad features that make cats and leopards similar, something that could potentially be helpful when analyzing new data.

If we could boost this ability to identify similarities between classes we should be able to create more flexible models better able to generalize, says Maki. And recent research has demonstrated how variations of an approach called regularization might help us achieve that goal.

Neural networks are prone to a problem called “overfitting,” which refers to a tendency to pay too much attention to tiny details and noise specific to their training set. When that happens, models will perform excellently on their training data but poorly when applied to unseen test data without these particular quirks.

Regularization is used to circumvent this problem, typically by reducing the network’s capacity to learn all this unnecessary information and therefore boost its ability to generalize to new data. Techniques are varied, but generally involve modifying the network’s structure or the strength of the weights between artificial neurons.

More recently, though, researchers have suggested new regularization approaches that work by encouraging a broader spread of probabilities across all classes. This essentially helps them capture more of the class similarities, says Maki, and therefore boosts their ability to generalize.

One such approach was devised in 2017 by Google Brain researchers, led by deep learning pioneer Geoffrey Hinton. They introduced a penalty to their training process that directly punished overconfident predictions in the model’s outputs, and a technique called label smoothing that prevents the largest probability becoming much larger than all others. This meant the probabilities were lower for correct labels and higher for incorrect ones, which was found to boost performance of models on varied tasks from image classification to speech recognition.

Another came from Maki himself in 2017 and achieves the same goal, but by suppressing high values in the model’s feature vector—the mathematical construct that describes all of an object’s important characteristics. This has a knock-on effect on the spread of output probabilities and also helped boost performance on various image classification tasks.

While it’s still early days for the approach, the fact that humans are able to exploit these kinds of similarities to learn more efficiently suggests that models that incorporate them hold promise. Maki points out that it could be particularly useful in applications such as robotic grasping, where distinguishing various similar objects is important.

Image Credit: Marianna Kalashnyk / Shutterstock.com Continue reading

Posted in Human Robots

#435080 12 Ways Big Tech Can Take Big Action on ...

Bill Gates and Mark Zuckerberg have invested $1 billion in Breakthrough Energy to fund next-generation solutions to tackle climate. But there is a huge risk that any successful innovation will only reach the market as the world approaches 2030 at the earliest.

We now know that reducing the risk of dangerous climate change means halving global greenhouse gas emissions by that date—in just 11 years. Perhaps Gates, Zuckerberg, and all the tech giants should invest equally in innovations to do with how their own platforms —search, social media, eCommerce—can support societal behavior changes to drive down emissions.

After all, the tech giants influence the decisions of four billion consumers every day. It is time for a social contract between tech and society.

Recently myself and collaborator Johan Falk published a report during the World Economic Forum in Davos outlining 12 ways the tech sector can contribute to supporting societal goals to stabilize Earth’s climate.

Become genuine climate guardians

Tech giants go to great lengths to show how serious they are about reducing their emissions. But I smell cognitive dissonance. Google and Microsoft are working in partnership with oil companies to develop AI tools to help maximize oil recovery. This is not the behavior of companies working flat-out to stabilize Earth’s climate. Indeed, few major tech firms have visions that indicate a stable and resilient planet might be a good goal, yet AI alone has the potential to slash greenhouse gas emissions by four percent by 2030—equivalent to the emissions of Australia, Canada, and Japan combined.

We are now developing a playbook, which we plan to publish later this year at the UN climate summit, about making it as simple as possible for a CEO to become a climate guardian.

Hey Alexa, do you care about the stability of Earth’s climate?

Increasingly, consumers are delegating their decisions to narrow artificial intelligence like Alexa and Siri. Welcome to a world of zero-click purchases.

Should algorithms and information architecture be designed to nudge consumer behavior towards low-carbon choices, for example by making these options the default? We think so. People don’t mind being nudged; in fact, they welcome efforts to make their lives better. For instance, if I want to lose weight, I know I will need all the help I can get. Let’s ‘nudge for good’ and experiment with supporting societal goals.

Use social media for good

Facebook’s goal is to bring the world closer together. With 2.2 billion users on the platform, CEO Mark Zuckerberg can reasonably claim this goal is possible. But social media has changed the flow of information in the world, creating a lucrative industry around a toxic brown-cloud of confusion and anger, with frankly terrifying implications for democracy. This has been linked to the rise of nationalism and populism, and to the election of leaders who shun international cooperation, dismiss scientific knowledge, and reverse climate action at a moment when we need it more than ever.

Social media tools need re-engineering to help people make sense of the world, support democratic processes, and build communities around societal goals. Make this your mission.

Design for a future on Earth

Almost everything is designed with computer software, from buildings to mobile phones to consumer packaging. It is time to make zero-carbon design the new default and design products for sharing, re-use and disassembly.

The future is circular

Halving emissions in a decade will require all companies to adopt circular business models to reduce material use. Some tech companies are leading the charge. Apple has committed to becoming 100 percent circular as soon as possible. Great.

While big tech companies strive to be market leaders here, many other companies lack essential knowledge. Tech companies can support rapid adoption in different economic sectors, not least because they have the know-how to scale innovations exponentially. It makes business sense. If economies of scale drive the price of recycled steel and aluminium down, everyone wins.

Reward low-carbon consumption

eCommerce platforms can create incentives for low-carbon consumption. The world’s largest experiment in greening consumer behavior is Ant Forest, set up by Chinese fintech giant Ant Financial.

An estimated 300 million customers—similar to the population of the United States—gain points for making low-carbon choices such as walking to work, using public transport, or paying bills online. Virtual points are eventually converted into real trees. Sure, big questions remain about its true influence on emissions, but this is a space for rapid experimentation for big impact.

Make information more useful

Science is our tool for defining reality. Scientific consensus is how we attain reliable knowledge. Even after the information revolution, reliable knowledge about the world remains fragmented and unstructured. Build the next generation of search engines to genuinely make the world’s knowledge useful for supporting societal goals.

We need to put these tools towards supporting shared world views of the state of the planet based on the best science. New AI tools being developed by startups like Iris.ai can help see through the fog. From Alexa to Google Home and Siri, the future is “Voice”, but who chooses the information source? The highest bidder? Again, the implications for climate are huge.

Create new standards for digital advertising and marketing

Half of global ad revenue will soon be online, and largely going to a small handful of companies. How about creating a novel ethical standard on what is advertised and where? Companies could consider promoting sustainable choices and healthy lifestyles and limiting advertising of high-emissions products such as cheap flights.

We are what we eat

It is no secret that tech is about to disrupt grocery. The supermarkets of the future will be built on personal consumer data. With about two billion people either obese or overweight, revolutions in choice architecture could support positive diet choices, reduce meat consumption, halve food waste and, into the bargain, slash greenhouse gas emissions.

The future of transport is not cars, it’s data

The 2020s look set to be the biggest disruption of the automobile industry since Henry Ford unveiled the Model T. Two seismic shifts are on their way.

First, electric cars now compete favorably with petrol engines on range. Growth will reach an inflection point within a year or two once prices reach parity. The death of the internal combustion engine in Europe and Asia is assured with end dates announced by China, India, France, the UK, and most of Scandinavia. Dates range from 2025 (Norway) to 2040 (UK and China).

Tech giants can accelerate the demise. Uber recently announced a passenger surcharge to help London drivers save around $1,500 a year towards the cost of an electric car.

Second, driverless cars can shift the transport economic model from ownership to service and ride sharing. A complete shift away from privately-owned vehicles is around the corner, with large implications for emissions.

Clean-energy living and working

Most buildings are barely used and inefficiently heated and cooled. Digitization can slash this waste and its corresponding emissions through measurement, monitoring, and new business models to use office space. While, just a few unicorns are currently in this space, the potential is enormous. Buildings are one of the five biggest sources of emissions, yet have the potential to become clean energy producers in a distributed energy network.

Creating liveable cities

More cities are setting ambitious climate targets to halve emissions in a decade or even less. Tech companies can support this transition by driving demand for low-carbon services for their workforces and offices, but also by providing tools to help monitor emissions and act to reduce them. Google, for example, is collecting travel and other data from across cities to estimate emissions in real time. This is possible through technologies like artificial intelligence and the internet of things. But beware of smart cities that turn out to be not so smart. Efficiencies can reduce resilience when cities face crises.

It’s a Start
Of course, it will take more than tech to solve the climate crisis. But tech is a wildcard. The actions of the current tech giants and their acolytes could serve to destabilize the climate further or bring it under control.

We need a new social contract between tech companies and society to achieve societal goals. The alternative is unthinkable. Without drastic action now, climate chaos threatens to engulf us all. As this future approaches, regulators will be forced to take ever more draconian action to rein in the problem. Acting now will reduce that risk.

Note: A version of this article was originally published on World Economic Forum

Image Credit: Bruce Rolff / Shutterstock.com Continue reading

Posted in Human Robots