Tag Archives: Should

#437590 Why We Need a Robot Registry


I have a confession to make: A robot haunts my nightmares. For me, Boston Dynamics’ Spot robot is 32.5 kilograms (71.1 pounds) of pure terror. It can climb stairs. It can open doors. Seeing it in a video cannot prepare you for the moment you cross paths on a trade-show floor. Now that companies can buy a Spot robot for US $74,500, you might encounter Spot anywhere.

Spot robots now patrol public parks in Singapore to enforce social distancing during the pandemic. They meet with COVID-19 patients at Boston’s Brigham and Women’s Hospital so that doctors can conduct remote consultations. Imagine coming across Spot while walking in the park or returning to your car in a parking garage. Wouldn’t you want to know why this hunk of metal is there and who’s operating it? Or at least whom to call to report a malfunction?

Robots are becoming more prominent in daily life, which is why I think governments need to create national registries of robots. Such a registry would let citizens and law enforcement look up the owner of any roaming robot, as well as learn that robot’s purpose. It’s not a far-fetched idea: The U.S. Federal Aviation Administration already has a registry for drones.

Governments could create national databases that require any companies operating robots in public spaces to report the robot make and model, its purpose, and whom to contact if the robot breaks down or causes problems. To allow anyone to use the database, all public robots would have an easily identifiable marker or model number on their bodies. Think of it as a license plate or pet microchip, but for bots.

There are some smaller-scale registries today. San Jose’s Department of Transportation (SJDOT), for example, is working with Kiwibot, a delivery robot manufacturer, to get real-time data from the robots as they roam the city’s streets. The Kiwibots report their location to SJDOT using the open-source Mobility Data Specification, which was originally developed by Los Angeles to track Bird scooters.

Real-time location reporting makes sense for Kiwibots and Spots wandering the streets, but it’s probably overkill for bots confined to cleaning floors or patrolling parking lots. That said, any robots that come in contact with the general public should clearly provide basic credentials and a way to hold their operators accountable. Given that many robots use cameras, people may also be interested in looking up who’s collecting and using that data.

I starting thinking about robot registries after Spot became available in June for anyone to purchase. The idea gained specificity after listening to Andra Keay, founder and managing director at Silicon Valley Robotics, discuss her five rules of ethical robotics at an Arm event in October. I had already been thinking that we needed some way to track robots, but her suggestion to tie robot license plates to a formal registry made me realize that people also need a way to clearly identify individual robots.

Keay pointed out that in addition to sating public curiosity and keeping an eye on robots that could cause harm, a registry could also track robots that have been hacked. For example, robots at risk of being hacked and running amok could be required to report their movements to a database, even if they’re typically restricted to a grocery store or warehouse. While we’re at it, Spot robots should be required to have sirens, because there’s no way I want one of those sneaking up on me.

This article appears in the December 2020 print issue as “Who’s Behind That Robot?” Continue reading

Posted in Human Robots

#437585 Dart-Shooting Drone Attacks Trees for ...

We all know how robots are great at going to places where you can’t (or shouldn’t) send a human. We also know how robots are great at doing repetitive tasks. These characteristics have the potential to make robots ideal for setting up wireless sensor networks in hazardous environments—that is, they could deploy a whole bunch of self-contained sensor nodes that create a network that can monitor a very large area for a very long time.

When it comes to using drones to set up sensor networks, you’ve generally got two options: A drone that just drops sensors on the ground (easy but inaccurate and limited locations), or using a drone with some sort of manipulator on it to stick sensors in specific places (complicated and risky). A third option, under development by researchers at Imperial College London’s Aerial Robotics Lab, provides the accuracy of direct contact with the safety and ease of use of passive dropping by instead using the drone as a launching platform for laser-aimed, sensor-equipped darts.

These darts (which the researchers refer to as aerodynamically stabilized, spine-equipped sensor pods) can embed themselves in relatively soft targets from up to 4 meters away with an accuracy of about 10 centimeters after being fired from a spring-loaded launcher. They’re not quite as accurate as a drone with a manipulator, but it’s pretty good, and the drone can maintain a safe distance from the surface that it’s trying to add a sensor to. Obviously, the spine is only going to work on things like wood, but the researchers point out that there are plenty of attachment mechanisms that could be used, including magnets, adhesives, chemical bonding, or microspines.

Indoor tests using magnets showed the system to be quite reliable, but at close range (within a meter of the target) the darts sometimes bounced off rather than sticking. From between 1 and 4 meters away, the darts stuck between 90 and 100 percent of the time. Initial outdoor tests were also successful, although the system was under manual control. The researchers say that “regular and safe operations should be carried out autonomously,” which, yeah, you’d just have to deal with all of the extra sensing and hardware required to autonomously fly beneath the canopy of a forest. That’s happening next, as the researchers plan to add “vision state estimation and positioning, as well as a depth sensor” to avoid some trees and fire sensors into others.

And if all of that goes well, they’ll consider trying to get each drone to carry multiple darts. Look out, trees: You’re about to be pierced for science.

“Unmanned Aerial Sensor Placement for Cluttered Environments,” by André Farinha, Raphael Zufferey, Peter Zheng, Sophie F. Armanini, and Mirko Kovac from Imperial College London, was published in IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437564 How We Won the DARPA SubT Challenge: ...

This is a guest post. The views expressed here are those of the authors and do not necessarily represent positions of IEEE or its organizational units.​

“Do you smell smoke?” It was three days before the qualification deadline for the Virtual Tunnel Circuit of the DARPA Subterranean Challenge Virtual Track, and our team was barrelling through last-minute updates to our robot controllers in a small conference room at the Michigan Tech Research Institute (MTRI) offices in Ann Arbor, Mich. That’s when we noticed the smell. We’d assumed that one of the benefits of entering a virtual disaster competition was that we wouldn’t be exposed to any actual disasters, but equipment in the basement of the building MTRI shares had started to smoke. We evacuated. The fire department showed up. And as soon as we could, the team went back into the building, hunkered down, and tried to make up for the unexpected loss of several critical hours.

Team BARCS joins the SubT Virtual Track
The smoke incident happened more than a year after we first learned of the DARPA Subterranean Challenge. DARPA announced SubT early in 2018, and at that time, we were interested in building internal collaborations on multi-agent autonomy problems, and SubT seemed like the perfect opportunity. Though a few of us had backgrounds in robotics, the majority of our team was new to the field. We knew that submitting a proposal as a largely non-traditional robotics team from an organization not known for research in robotics was a risk. However, the Virtual Track gave us the opportunity to focus on autonomy and multi-agent teaming strategies, areas requiring skill in asynchronous computing and sensor data processing that are strengths of our Institute. The prevalence of open source code, small inexpensive platforms, and customizable sensors has provided the opportunity for experts in fields other than robotics to apply novel approaches to robotics problems. This is precisely what makes the Virtual Track of SubT appealing to us, and since starting SubT, autonomy has developed into a significant research thrust for our Institute. Plus, robots are fun!

After many hours of research, discussion, and collaboration, we submitted our proposal early in 2018. And several months later, we found out that we had won a contract and became a funded team (Team BARCS) in the SubT Virtual Track. Now we needed to actually make our strategy work for the first SubT Tunnel Circuit competition, taking place in August of 2019.

Building a team of virtual robots
A natural approach to robotics competitions like SubT is to start with the question of “what can X-type robot do” and then build a team and strategy around individual capabilities. A particular challenge for the SubT Virtual Track is that we can’t design our own systems; instead, we have to choose from a predefined set of simulated robots and sensors that DARPA provides, based on the real robots used by Systems Track teams. Our approach is to look at what a team of robots can do together, determining experimentally what the best team configuration is for each environment. By the final competition, ideally we will be demonstrating the value of combining platforms across multiple Systems Track teams into a single Virtual Track team. Each of the robot configurations in the competition has an associated cost, and team size is constrained by a total cost. This provides another impetus for limiting dependence on complex sensor packages, though our ranging preference is 3D lidar, which is the most expensive sensor!

Image: Michigan Tech Research Institute

The teams can rely on realistic physics and sensors but they start off with no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for their simulated robots.

One of the frequent questions we receive about the Virtual Track is if it’s like a video game. While it may look similar on the surface, everything under the hood in a video game is designed to service the game narrative and play experience, not require novel research in AI and autonomy. The purpose of simulations, on the other hand, is to include full physics and sensor models (including noise and errors) to provide a testbed for prototyping and developing solutions to those real-world challenges. We are starting with realistic physics and sensors but no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for our simulated robots.

Though the simulation is more like real life than a video game, it is not real life. Due to occasional software bugs, there are still non-physical events, like the robots falling through an invisible hole in the world or driving through a rock instead of over it or flipping head over heels when driving over a tiny lip between world tiles. These glitches, while sometimes frustrating, still allow the SubT Virtual platform to be realistic enough to support rapid prototyping of controller modules that will transition straightforwardly onto hardware, closing the loop between simulation and real-world robots.

Full autonomy for DARPA-hard scenarios
The Virtual Track requirement that the robotic agents be fully autonomous, rather than have a human supervisor, is a significant distinction between the Systems and Virtual Tracks of SubT. Our solutions must be hardened against software faults caused by things like missing and bad data since our robots can’t turn to us for help. In order for a team of robots to complete this objective reliably with no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to autonomously identify and manage faults and failures anywhere in the control chain.

The communications limitations in subterranean environments (both real and virtual) mean that we need to keep the amount of information shared between robots low, while making the usability of that information for joint decision-making high. This goal has guided much of our design for autonomous navigation and joint search strategy for our team. For example, instead of sharing the full SLAM map of the environment, our agents only share a simplified graphical representation of the space, along with data about frontiers it has not yet explored, and are able to merge its information with the graphs generated by other agents. The merged graph can then be used for planning and navigation without having full knowledge of the detailed 3D map.

The Virtual Track requires that the robotic agents be fully autonomous. With no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to identify and manage faults and failures anywhere in the control chain.

Since the objective of the SubT program is to advance the state-of-the-art in rapid autonomous exploration and mapping of subterranean environments by robots, our first software design choices focused on the mapping task. The SubT virtual environments are sufficiently rich as to provide interesting problems in building so-called costmaps that accurately separate obstructions that are traversable (like ramps) from legitimately impassible obstructions. An extra complication we discovered in the first course, which took place in mining tunnels, was that the angle of the lowest beam of the lidar was parallel to the down ramps in the tunnel environment, so they could not “see” the ground (or sometimes even obstructions on the ramp) until they got close enough to the lip of the ramp to receive lidar reflections off the bottom of the ramp. In this case, we had to not only change the costmap to convince the robot that there was safe ground to reach over the lip of the ramp, but also had to change the path planner to get the robot to proceed with caution onto the top of the ramp in case there were previously unseen obstructions on the ramp.

In addition to navigation in the costmaps, the robot must be able to generate its own goals to navigate to. This is what produces exploratory behavior when there is no map to start with. SLAM is used to generate a detailed map of the environment explored by a single robot—the space it has probed with its sensors. From the sensor data, we are able to extract information about the interior space of the environment while looking for holes in the data, to determine things like whether the current tunnel continues or ends, or how many tunnels meet at an intersection. Once we have some understanding of the interior space, we can place navigation goals in that space. These goals naturally update as the robot traverses the tunnel, allowing the entire space to be explored.

Sending our robots into the virtual unknown
The solutions for the Virtual Track competitions are tested by DARPA in multiple sequestered runs across many environments for each Circuit in the month prior to the Systems Track competition. We must wait until the joint award ceremony at the conclusion of the Systems Track to find out the results, and we are completely in the dark about placings before the awards are announced. It’s nerve-wracking! The challenges of the worlds used in the Circuit events are also hand-designed, so features of the worlds we use for development could be combined in ways we have not anticipated—it’s always interesting to see what features were prioritized after the event. We test everything in our controllers well enough to feel confident that we at least are submitting something reasonably stable and broadly capable, and once the solution is in, we can’t really do anything other than “let go” and get back to work on the next phase of development. Maybe it’s somewhat like sending your kid to college: “we did our best to prepare you for this world, little bots. Go do good.”

Image: Michigan Tech Research Institute

The first SubT competition was the Tunnel Circuit, featuring a labyrinthine environment that simulated human-engineered tunnels, including hazards such as vertical shafts and rubble.

The first competition was the Tunnel Circuit, in October 2019. This environment models human-engineered tunnels. Two substantial challenges in this environment were vertical shafts and rubble. Our team accrued 21 points over 15 competition runs in five separate tunnel environments for a second place finish, behind Team Coordinated Robotics.

The next phase of the SubT virtual competition was the Urban Circuit. Much of the difference between our Tunnel and Urban Circuit results came down to thorough testing to identify failure modes and implementations of checks and data filtering for fault tolerance. For example, in the SLAM nodes run by a single robot, the coordinates of the most recent sensor data are changed multiple times during processing and integration into the current global 3D map of the “visited” environment stored by that robot. If there is lag in IMU or clock data, the observation may be temporarily registered at a default location that is very far from the actual position. Since most of our decision processes for exploration are downstream from SLAM, this can cause faulty or impossible goals to be generated, and the robots then spend inordinate amounts of time trying to drive through walls. We updated our method to add a check to see if the new map position has jumped a far distance from the prior map position, and if so, we threw that data out.

Image: Michigan Tech Research Institute

In open spaces like the rooms in the Urban circuit, we adjusted our approach to exploration through graph generation to allow the robots to accurately identify viable routes while helping to prevent forays off platform edges.

Our approach to exploration through graph generation based on identification of interior spaces allowed us to thoroughly explore the centers of rooms, although we did have to make some changes from the Tunnel circuit to achieve that. In the Tunnel circuit, we used a simplified graph of the environment based on landmarks like intersections. The advantage of this approach is that it is straightforward for two robots to compare how the graphs of the space they explored individually overlap. In open spaces like the rooms in the Urban circuit, we chose to instead use a more complex, less directly comparable graph structure based on the individual robot’s trajectory. This allowed the robots to accurately identify viable routes between features like subway station platforms and subway tracks, as well as to build up the navigation space for room interiors, while helping to prevent forays off the platform edges. Frontier information is also integrated into the graph, providing a uniform data structure for both goal selection and route planning.

The results are in!
The award ceremony for the Urban Circuit was held concurrently with the Systems Track competition awards this past February in Washington State. We sent a team representative to participate in the Technical Interchange Meeting and present the approach for our team, and the rest of us followed along from our office space on the DARPAtv live stream. While we were confident in our solution, we had also been tracking the online leaderboard and knew our competitors were going to be submitting strong solutions. Since the competition environments are hand-designed, there are always novel challenges that could be presented in these environments as well. We knew we would put up a good fight, but it was very exciting to see BARCS appear in first place!

Any time we implement a new module in our control system, there is a lot of parameter tuning that has to happen to produce reliably good autonomous behavior. In the Urban Circuit, we did not sufficiently test some parameter values in our exploration modules. The effect of this was that the robots only chose to go down small hallways after they explored everything else in their environment, which meant very often they ran out of time and missed a lot of small rooms. This may be the biggest source of lost points for us in the Urban Circuit. One of our major plans going forward from the Urban Circuit is to integrate more sophisticated node selection methods, which can help our robots more intelligently prioritize which frontier nodes to visit. By going through all three Circuit challenges, we will learn how to appropriately add weights to the frontiers based on features of the individual environments. For the Final Challenge, when all three Circuit environments will be combined into large systems, we plan to implement adaptive controllers that will identify their environments and use the appropriate optimized parameters for that environment. In this way, we expect our agents to be able to (for example) prioritize hallways and other small spaces in Urban environments, and perhaps prioritize large openings over small in the Cave environments, if the small openings end up being treacherous overall.

Next for our team: Cave Circuit
Coming up next for Team BARCS is the Virtual Cave Circuit. We are in the middle of testing our hypothesis that our controller will transition from UGVs to UAVs and developing strategies for refining our solution to handle Cave Circuit environmental hazards. The UAVs have a shorter battery life than the UGVs, so executing a joint exploration strategy will also be a high priority for this event, as will completing our work on graph sharing and merging, which will give our robot teams more sophisticated options for navigation and teamwork. We’re reaching a threshold in development where we can start increasing the “smarts” of the robots, which we anticipate will be critical for the final competition, where all of the challenges of SubT will be combined to push the limits of innovation. The Cave Circuit will also have new environmental challenges to tackle: dynamic features such as rock falls have been added, which will block previously accessible passages in the cave environment. We think our controllers are well-poised to handle this new challenge, and we’re eager to find out if that’s the case.

As of now, the biggest worries for us are time and team composition. The Cave Circuit deadline has been postponed to October 15 due to COVID-19 delays, with the award ceremony in mid-November, but there have also been several very compelling additions to the testbed that we would like to experiment with before submission, including droppable networking ‘breadcrumbs’ and new simulated platforms. There are design trade-offs when balancing general versus specialist approaches to the controllers for these robots—since we are adding UAVs to our team for the first time, there are new decisions that will have to be made. For example, the UAVs can ascend into vertical spaces, but only have a battery life of 20 minutes. The UGVs by contrast have 90 minute battery life. One of our strategies is to do an early return to base with one or more agents to buy down risk on making any artifact reports at all for the run, hedging against our other robots not making it back in time, a lesson learned from the Tunnel Circuit. Should a UAV take on this role, or is it better to have them explore deeper into the environment and instead report their artifacts to a UGV or network node, which comes with its own risks? Testing and experimentation to determine the best options takes time, which is always a worry when preparing for a competition! We also anticipate new competitors and stiffer competition all around.

Image: Michigan Tech Research Institute

Team BARCS has now a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021.

Going forward from the Cave Circuit, we will have a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021. What we are most excited about is increasing the level of intelligence of the agents in their teamwork and joint exploration of the environment. Since we will have (hopefully) built up robust approaches to handling each of the specific types of environments in the Tunnel, Urban, and Cave circuits, we will be aiming to push the limits on collaboration and efficiency among the agents in our team. We view this as a central research contribution of the Virtual Track to the Subterranean Challenge because intelligent, adaptive, multi-robot collaboration is an upcoming stage of development for integration of robots into our lives.

The Subterranean Challenge Virtual Track gives us a bridge for transitioning our more abstract research ideas and algorithms relevant to this degree of autonomy and collaboration onto physical systems, and exploring the tangible outcomes of implementing our work in the real world. And the next time there’s an incident in the basement of our building, the robots (and humans) of Team BARCS will be ready to respond.

Richard Chase, Ph.D., P.E., is a research scientist at Michigan Tech Research Institute (MTRI) and has 20 years of experience developing robotics and cyber physical systems in areas from remote sensing to autonomous vehicles. At MTRI, he works on a variety of topics such as swarm autonomy, human-swarm teaming, and autonomous vehicles. His research interests are the intersection of design, robotics, and embedded systems.

Sarah Kitchen is a Ph.D. mathematician working as a research scientist and an AI/Robotics focus area leader at MTRI. Her research interests include intelligent autonomous agents and multi-agent collaborative teams, as well as applications of autonomous robots to sensing systems.

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001118C0124 and is released under Distribution Statement (Approved for Public Release, Distribution Unlimited). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Continue reading

Posted in Human Robots

#437550 McDonald’s Is Making a Plant-Based ...

Fast-food chains have been doing what they can in recent years to health-ify their menus. For better or worse, burgers, fries, fried chicken, roast beef sandwiches, and the like will never go out of style—this is America, after all—but consumers are increasingly gravitating towards healthier options.

One of those options is plant-based foods, and not just salads and veggie burgers, but “meat” made from plants. Burger King was one of the first big fast-food chains to jump on the plant-based meat bandwagon, introducing its Impossible Whopper in restaurants across the country last year after a successful pilot program. Dunkin’ (formerly Dunkin’ Donuts) uses plant-based patties in its Beyond Sausage breakfast sandwiches.

But there’s one big player in the fast food market that’s been oddly missing from the plant-based trend—until now. McDonald’s announced last week that it will debut a sandwich called the McPlant in key US markets next year. Unlike Dunkin’ and Burger King, who both worked with Impossible Foods to make their plant-based products, McDonald’s worked with Los Angeles-based Beyond Meat, which makes chicken, beef, and pork-like products from plants.

According to Bloomberg, though, McDonald’s decided to forego a partnership with Beyond Meat in favor of creating its own plant-based products. Imitation chicken nuggets and plant-based breakfast sandwiches are in its plans as well.

McDonald’s has bounced back impressively from its March low (when the coronavirus lockdowns first happened in the US). Last month the company’s stock reached a 52-week high of $231 per share (as compared to its low in March of $124 per share).

To keep those numbers high and make it as easy as possible for customers to get their hands on plant-based burgers and all the traditional menu items too, the fast food chain is investing in tech and integrating more digital offerings into its restaurants.

McDonald’s has acquired a couple artificial intelligence companies in the last year and a half; Dynamic Yield is an Israeli company that uses AI to personalize customers’ experiences, and McDonald’s is using Dynamic Yield’s tech on its smart menu boards, for example by customizing the items displayed on the drive-thru menu based on the weather and the time of day, and recommending additional items based on what a customer asks for first (i.e. “You know what would go great with that coffee? Some pancakes!”).

The fast food giant also bought Apprente, a startup that uses AI in voice-based ordering platforms. McDonald’s is using the tech to help automate its drive-throughs.

In addition to these investments, the company plans to launch a digital hub called MyMcDonald’s that will include a loyalty program, start doing deliveries of its food through its mobile app, and test different ways of streamlining the food order and pickup process—with many of the new ideas geared towards pandemic times, like express pickup lanes for people who placed digital orders and restaurants with drive-throughs for delivery and pickup orders only.

Plant-based meat patties appear to be just one small piece of McDonald’s modernization plans. Those of us who were wondering what they were waiting for should have known—one of the most-recognized fast food chains in the world wasn’t about to let itself get phased out. It seems it will only be a matter of time until you can pull out your phone, make a few selections, and have a burger made from plants—with a side of fries made from more plants—show up at your door a little while later. Drive-throughs, shouting your order into a fuzzy speaker with a confused teen on the other end, and burgers made from beef? So 2019.

Image Credit: McDonald’s Continue reading

Posted in Human Robots

#437504 A New and Improved Burger Robot’s on ...

No doubt about it, the pandemic has changed the way we eat. Never before have so many people who hated cooking been forced to learn how to prepare a basic meal for themselves. With sit-down restaurants limiting their capacity or shutting down altogether, consumption of fast food and fast-casual food has skyrocketed. Don’t feel like slaving over a hot stove? Just hit the drive through and grab a sandwich and some fries (the health implications of increased fast food consumption are another matter…).

Given our sudden immense need for paper-wrapped burgers and cardboard cartons of fries, fast food workers are now counted as essential. But what about their safety, both from a virus standpoint and from the usual risks of working in a busy kitchen (like getting burned by the stove or the hot oil from the fryer, cut by a slicer, etc.)? And how many orders of burgers and fries can humans possibly churn out in an hour?

Enter the robot. Three and a half years ago, a burger-flipping robot aptly named Flippy, made by Miso Robotics, made its debut at a fast food restaurant in California called CaliBurger. Now Flippy is on the market for anyone who wishes to purchase their own, with a price tag of $30,000 and a range of new capabilities—this burger bot has progressed far beyond just flipping burgers.

Flippy’s first iteration was already pretty impressive. It used machine learning software to locate and identify objects in front of it (rather than needing to have objects lined up in specific spots), and was able to learn from experience to improve its accuracy. Sensors on its grill-facing side took in thermal and 3D data to gauge the cooking process for multiple patties at a time, and cameras allowed the robot to ‘see’ its surroundings.

A system that digitally sent tickets to the kitchen from the restaurant’s front counter kept Flippy on top of how many burgers it should be cooking at any given time. Its key tasks were pulling raw patties from a stack and placing them on the grill, tracking each burger’s cook time and temperature, and transferring cooked burgers to a plate.

The new and improved Flippy can do all this and more. It can cook 19 different foods, including chicken wings, onion rings, french fries, and even the Impossible Burger (which, as you may know, isn’t actually made of meat, and that means it’s a little trickier to grill it to perfection).

Flippy’s handiwork. Image Credit: Miso Robotics
And instead of its body sitting on a cart on wheels (which took up a lot of space and meant the robot’s arm could get in the way of human employees), it’s now attached to a rail along the stove’s hood, and can move along the rail to access both the grill and the fryer (provided they’re next to each other, which in many fast food restaurants they are). In fact, Flippy has a new acronym attached to its name: ROAR, which stands for Robot on a Rail.

Flippy ROAR in action, artist rendering. Image Credit: Miso Robotics
Sensors equipped with laser make it safer for human employees to work near Flippy. The bot can automatically switch between different tools, such as a spatula for flipping patties and tongs for gripping the handle of a fryer basket. Its AI software will enable it to learn new skills over time.

Flippy’s interface. Image Credit: Miso Robotics
The first big restaurant chain to go all-in on Flippy was White Castle, which in July announced plans to pilot Flippy ROAR before year’s end. And just last month, Miso made the bot commercially available. The current cost is $30,000 (plus a monthly fee of $1,500 for use of the software), but the company hopes to bring the price down to $20,000 within the next year.

According to Business Insider, demand for the fast food robot is through the roof, probably given a significant boost by the pandemic—thanks, Covid-19. The pace of automation has picked up across multiple sectors, and will likely continue to accelerate as companies look to insure themselves against additional losses.

So for the immediate future, it seems that no matter what happens, we don’t have to worry about the supply of burgers, fries, onion rings, chicken wings, and the like running out.

Now if only Flippy had a cousin—perhaps named Leafy—who could chop vegetables and greens and put together fresh-made salads…

Maybe that can be Miso Robotics’ next project.

Image Credit: Miso Robotics Continue reading

Posted in Human Robots