Tag Archives: short

#437974 China Wants to Be the World’s AI ...

China’s star has been steadily rising for decades. Besides slashing extreme poverty rates from 88 percent to under 2 percent in just 30 years, the country has become a global powerhouse in manufacturing and technology. Its pace of growth may slow due to an aging population, but China is nonetheless one of the world’s biggest players in multiple cutting-edge tech fields.

One of these fields, and perhaps the most significant, is artificial intelligence. The Chinese government announced a plan in 2017 to become the world leader in AI by 2030, and has since poured billions of dollars into AI projects and research across academia, government, and private industry. The government’s venture capital fund is investing over $30 billion in AI; the northeastern city of Tianjin budgeted $16 billion for advancing AI; and a $2 billion AI research park is being built in Beijing.

On top of these huge investments, the government and private companies in China have access to an unprecedented quantity of data, on everything from citizens’ health to their smartphone use. WeChat, a multi-functional app where people can chat, date, send payments, hail rides, read news, and more, gives the CCP full access to user data upon request; as one BBC journalist put it, WeChat “was ahead of the game on the global stage and it has found its way into all corners of people’s existence. It could deliver to the Communist Party a life map of pretty much everybody in this country, citizens and foreigners alike.” And that’s just one (albeit big) source of data.

Many believe these factors are giving China a serious leg up in AI development, even providing enough of a boost that its progress will surpass that of the US.

But there’s more to AI than data, and there’s more to progress than investing billions of dollars. Analyzing China’s potential to become a world leader in AI—or in any technology that requires consistent innovation—from multiple angles provides a more nuanced picture of its strengths and limitations. In a June 2020 article in Foreign Affairs, Oxford fellows Carl Benedikt Frey and Michael Osborne argued that China’s big advantages may not actually be that advantageous in the long run—and its limitations may be very limiting.

Moving the AI Needle
To get an idea of who’s likely to take the lead in AI, it could help to first consider how the technology will advance beyond its current state.

To put it plainly, AI is somewhat stuck at the moment. Algorithms and neural networks continue to achieve new and impressive feats—like DeepMind’s AlphaFold accurately predicting protein structures or OpenAI’s GPT-3 writing convincing articles based on short prompts—but for the most part these systems’ capabilities are still defined as narrow intelligence: completing a specific task for which the system was painstakingly trained on loads of data.

(It’s worth noting here that some have speculated OpenAI’s GPT-3 may be an exception, the first example of machine intelligence that, while not “general,” has surpassed the definition of “narrow”; the algorithm was trained to write text, but ended up being able to translate between languages, write code, autocomplete images, do math, and perform other language-related tasks it wasn’t specifically trained for. However, all of GPT-3’s capabilities are limited to skills it learned in the language domain, whether spoken, written, or programming language).

Both AlphaFold’s and GPT-3’s success was due largely to the massive datasets they were trained on; no revolutionary new training methods or architectures were involved. If all it was going to take to advance AI was a continuation or scaling-up of this paradigm—more input data yields increased capability—China could well have an advantage.

But one of the biggest hurdles AI needs to clear to advance in leaps and bounds rather than baby steps is precisely this reliance on extensive, task-specific data. Other significant challenges include the technology’s fast approach to the limits of current computing power and its immense energy consumption.

Thus, while China’s trove of data may give it an advantage now, it may not be much of a long-term foothold on the climb to AI dominance. It’s useful for building products that incorporate or rely on today’s AI, but not for pushing the needle on how artificially intelligent systems learn. WeChat data on users’ spending habits, for example, would be valuable in building an AI that helps people save money or suggests items they might want to purchase. It will enable (and already has enabled) highly tailored products that will earn their creators and the companies that use them a lot of money.

But data quantity isn’t what’s going to advance AI. As Frey and Osborne put it, “Data efficiency is the holy grail of further progress in artificial intelligence.”

To that end, research teams in academia and private industry are working on ways to make AI less data-hungry. New training methods like one-shot learning and less-than-one-shot learning have begun to emerge, along with myriad efforts to make AI that learns more like the human brain.

While not insignificant, these advancements still fall into the “baby steps” category. No one knows how AI is going to progress beyond these small steps—and that uncertainty, in Frey and Osborne’s opinion, is a major speed bump on China’s fast-track to AI dominance.

How Innovation Happens
A lot of great inventions have happened by accident, and some of the world’s most successful companies started in garages, dorm rooms, or similarly low-budget, nondescript circumstances (including Google, Facebook, Amazon, and Apple, to name a few). Innovation, the authors point out, often happens “through serendipity and recombination, as inventors and entrepreneurs interact and exchange ideas.”

Frey and Osborne argue that although China has great reserves of talent and a history of building on technologies conceived elsewhere, it doesn’t yet have a glowing track record in terms of innovation. They note that of the 100 most-cited patents from 2003 to present, none came from China. Giants Tencent, Alibaba, and Baidu are all wildly successful in the Chinese market, but they’re rooted in technologies or business models that came out of the US and were tweaked for the Chinese population.

“The most innovative societies have always been those that allowed people to pursue controversial ideas,” Frey and Osborne write. China’s heavy censorship of the internet and surveillance of citizens don’t quite encourage the pursuit of controversial ideas. The country’s social credit system rewards people who follow the rules and punishes those who step out of line. Frey adds that top-down execution of problem-solving is effective when the problem at hand is clearly defined—and the next big leaps in AI are not.

It’s debatable how strongly a culture of social conformism can impact technological innovation, and of course there can be exceptions. But a relevant historical example is the Soviet Union, which, despite heavy investment in science and technology that briefly rivaled the US in fields like nuclear energy and space exploration, ended up lagging far behind primarily due to political and cultural factors.

Similarly, China’s focus on computer science in its education system could give it an edge—but, as Frey told me in an email, “The best students are not necessarily the best researchers. Being a good researcher also requires coming up with new ideas.”

Winner Take All?
Beyond the question of whether China will achieve AI dominance is the issue of how it will use the powerful technology. Several of the ways China has already implemented AI could be considered morally questionable, from facial recognition systems used aggressively against ethnic minorities to smart glasses for policemen that can pull up information about whoever the wearer looks at.

This isn’t to say the US would use AI for purely ethical purposes. The military’s Project Maven, for example, used artificially intelligent algorithms to identify insurgent targets in Iraq and Syria, and American law enforcement agencies are also using (mostly unregulated) facial recognition systems.

It’s conceivable that “dominance” in AI won’t go to one country; each nation could meet milestones in different ways, or meet different milestones. Researchers from both countries, at least in the academic sphere, could (and likely will) continue to collaborate and share their work, as they’ve done on many projects to date.

If one country does take the lead, it will certainly see some major advantages as a result. Brookings Institute fellow Indermit Gill goes so far as to say that whoever leads in AI in 2030 will “rule the world” until 2100. But Gill points out that in addition to considering each country’s strengths, we should consider how willing they are to improve upon their weaknesses.

While China leads in investment and the US in innovation, both nations are grappling with huge economic inequalities that could negatively impact technological uptake. “Attitudes toward the social change that accompanies new technologies matter as much as the technologies, pointing to the need for complementary policies that shape the economy and society,” Gill writes.

Will China’s leadership be willing to relax its grip to foster innovation? Will the US business environment be enough to compete with China’s data, investment, and education advantages? And can both countries find a way to distribute technology’s economic benefits more equitably?

Time will tell, but it seems we’ve got our work cut out for us—and China does too.

Image Credit: Adam Birkett on Unsplash Continue reading

Posted in Human Robots

#437971 Video Friday: Teleport Yourself Into ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Samsung announced some new prototype robots at CES this week. It's a fancy video, but my guess is that the actual autonomy here is minimal at best.

[ Samsung ]

Some very impressive reactive agility from Ghost Robotics' little quadruped.

[ Ghost Robotics ]

Toyota Research Institute (TRI) is researching how to bring together the instinctive reflexes of professional drivers and automated driving technology that uses the calculated foresight of a supercomputer. Using a Toyota GR Supra, TRI will learn from some of the most skilled drivers in the world to develop sophisticated vehicle control algorithms. The project’s goal is to design a new level of active safety technology for the Toyota Guardian™ approach of amplifying human driving abilities and helping keep people safe.

[ TRI ]

The end of this video features one of the most satisfying-sounding drone outtakes I've ever heard,

[ ASL ]

Reachy can now run the first humanoid VR teleoperation app available on the market. This app allows you to place yourself in the body of a humanoid robot, in VR, wherever you are in the world, to remotely operate it and carry out complex tasks. With this new functionality, Reachy is able to learn from the demonstration of the humans who control it, which makes application development even easier.

[ Pollen Robotics ]

Thanks Elsa!

Boston Dynamics has inspired some dancing robot videos recently, including this from Marco Tempest.

[ Marco Tempest ]

MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.

I like the minimalist approach. I dislike the “it’s like you’re interacting with a living pet” bit.

[ Kickstarter ]

There's a short gif of these warehouse robots going around, but here's the full video.

[ BionicHIVE ]

Vstone's Robovie-Z proves that you don't need fancy hardware for effective teleworking.

[ Vstone ]

All dual-arm robots are required, at some point, to play pool.

[ ABB ]

Volkswagen Group Components gives us a first glimpse of the real prototypes. This is one of the visionary charging concepts that Volkswagen hopes will expand the charging infrastructure over the next few years. Its task: fully autonomous charging of vehicles in restricted parking areas, like underground car parks.

To charge several vehicles at the same time, the mobile robot moves a trailer, essentially a mobile energy storage unit, to the vehicle, connects it up and then uses this energy storage unit to charge the battery of the electric vehicle. The energy storage unit stays with the vehicle during the charging process. In the meantime, the robot charges other electric vehicles.

[ Volkswagen ]

I've got a lot of questions about Moley Robotics' kitchen. But I would immediately point out that the system appears to do no prep work, which (at least for me) is the time-consuming and stressful part of cooking.

[ Moley Robotics ]

Blueswarm is a collective of fish-inspired miniature underwater robots that can achieve a wide variety of 3D collective behaviors – synchrony, aggregation/dispersion, milling, search – using only implicit communication mediated through the production and sensing of blue light. We envision this platform for investigating collective AI, underwater coordination, and fish-inspired locomotion and sensing.

[ Science Robotics ]

A team of Malaysian researchers are transforming pineapple leaves into strong materials that can be used to build frames for unmanned aircraft or drones.

[ Reuters ]

The future of facility disinfecting is here, protect your customers, and create peace of mind. Our drone sanitization spraying technology is up to 100% more efficient and effective than conventional manual spray sterilization processes.

[ Draganfly ]

Robots are no long a future technology, as small robots can be purchased today to be utilized for educational purposes. See what goes into making a modern robot come to life.

[ Huggbees ]

How does a robot dog learn how to dance? Adam and the Tested team examine and dive into Boston Dynamics' Choreographer software that was behind Spot's recent viral dancing video.

[ Tested ]

For years, engineers have had to deal with “the tyranny of the fairing,” that anything you want to send into space has to fit into the protective nosecone on top of the rocket. A field of advanced design has been looking for new ways to improve our engineering, using the centuries-old artform to dream bigger.

[ JPL ] Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots

#437912 “Boston Dynamics Will Continue to ...

Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.

Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.

IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?

Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.

So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.

Photo: Boston Dynamics

Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”

How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?

In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.

Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.

Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?

So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.

What are you most excited about here? How do you think this deal will benefit Boston Dynamics?

I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.

“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”

Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.

And when you’ve been talking with Hyundai, what are they most excited about?

I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.

We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?

Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.

It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.

Photo: Boston Dynamics

Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.

While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?

Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.

As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.

How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?

We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.

I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.

“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”

Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?

Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.

And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.

Photo: Boston Dynamics

Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”

What would it take to commercialize Atlas? And are you getting closer with Handle?

We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.

For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”

The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?

Yes, that’s the work that we’re doing on Handle.

As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.

Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?

I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading

Posted in Human Robots

#437869 Video Friday: Japan’s Gundam Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.

Another BIG step for Japan’s Gundam project.

[ Gundam Factory ]

We present an interactive design system that allows users to create sculpting styles and fabricate clay models using a standard 6-axis robot arm. Given a general mesh as input, the user iteratively selects sub-areas of the mesh through decomposition and embeds the design expression into an initial set of toolpaths by modifying key parameters that affect the visual appearance of the sculpted surface finish. We demonstrate the versatility of our approach by designing and fabricating different sculpting styles over a wide range of clay models.

[ Disney Research ]

China’s Chang’e-5 completed the drilling, sampling and sealing of lunar soil at 04:53 BJT on Wednesday, marking the first automatic sampling on the Moon, the China National Space Administration (CNSA) announced Wednesday.

[ CCTV ]

Red Hat’s been putting together an excellent documentary on Willow Garage and ROS, and all five parts have just been released. We posted Part 1 a little while ago, so here’s Part 2 and Part 3.

Parts 4 and 5 are at the link below!

[ Red Hat ]

Congratulations to ANYbotics on a well-deserved raise!

ANYbotics has origins in the Robotic Systems Lab at ETH Zurich, and ANYmal’s heritage can be traced back at least as far as StarlETH, which we first met at ICRA 2013.

[ ANYbotics ]

Most conventional robots are working with 0.05-0.1mm accuracy. Such accuracy requires high-end components like low-backlash gears, high-resolution encoders, complicated CNC parts, powerful motor drives, etc. Those in combination end up an expensive solution, which is either unaffordable or unnecessary for many applications. As a result, we found the Apicoo Robotics to provide our customers solutions with a much lower cost and higher stability.

[ Apicoo Robotics ]

The Skydio 2 is an incredible drone that can take incredible footage fully autonomously, but it definitely helps if you do incredible things in incredible places.

[ Skydio ]

Jueying is the first domestic sensitive quadruped robot for industry applications and scenarios. It can coordinate (replace) humans to reach any place that can be reached. It has superior environmental adaptability, excellent dynamic balance capabilities and precise Environmental perception capabilities. By carrying functional modules for different application scenarios in the safe load area, the mobile superiority of the quadruped robot can be organically integrated with the commercialization of functional modules, providing smart factories, smart parks, scene display and public safety application solutions.

[ DeepRobotics ]

We have developed semi-autonomous quadruped robot, called LASER-D (Legged-Agile-Smart-Efficient Robot for Disinfection) for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to controlling the spray action without the need for an extra stabilization mechanism. The system includes an image processing capability to verify disinfected regions with high accuracy. This system allows the robot to successfully carry out effective disinfection tasks while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.

[ USC Viterbi ]

We propose the “multi-vision hand”, in which a number of small high-speed cameras are mounted on the robot hand of a common 7 degrees-of-freedom robot. Also, we propose visual-servoing control by using a multi-vision system that combines the multi-vision hand and external fixed high-speed cameras. The target task was ball catching motion, which requires high-speed operation. In the proposed catching control, the catch position of the ball, which is estimated by the external fixed high-speed cameras, is corrected by the multi-vision hand in real-time.

More details available through IROS on-demand.

[ Namiki Laboratory ]

Shunichi Kurumaya wrote in to share his work on PneuFinger, a pneumatically actuated compliant robotic gripping system.

[ Nakamura Lab ]

Thanks Shunichi!

Motivated by insights into the human teaching process, we introduce a method for incorporating unstructured natural language into imitation learning. At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent, e.g., “Go to the large green bowl’’. The training process, then, interrelates the different modalities to encode the correlations between language, perception, and motion. The resulting language-conditioned visuomotor policies can be conditioned at run time on new human commands and instructions, which allows for more fine-grained control over the trained policies while also reducing situational ambiguity.

[ ASU ]

Thanks Heni!

Gita is on sale for the holidays for only $2,000.

[ Gita ]

This video introduces a computational approach for routing thin artificial muscle actuators through hyperelastic soft robots, in order to achieve a desired deformation behavior. Provided with a robot design, and a set of example deformations, we continuously co-optimize the routing of actuators, and their actuation, to approximate example deformations as closely as possible.

[ Disney Research ]

Researchers and mountain rescuers in Switzerland are making huge progress in the field of autonomous drones as the technology becomes more in-demand for global search-and-rescue operations.

[ SWI ]

This short clip of the Ghost Robotics V60 features an interesting, if awkward looking, righting behavior at the end.

[ Ghost Robotics ]

Europe’s Rosalind Franklin ExoMars rover has a younger ’sibling’, ExoMy. The blueprints and software for this mini-version of the full-size Mars explorer are available for free so that anyone can 3D print, assemble and program their own ExoMy.

[ ESA ]

The holiday season is here, and with the added impact of Covid-19 consumer demand is at an all-time high. Berkshire Grey is the partner that today’s leading organizations turn to when it comes to fulfillment automation.

[ Berkshire Grey ]

Until very recently, the vast majority of studies and reports on the use of cargo drones for public health were almost exclusively focused on the technology. The driving interest from was on the range that these drones could travel, how much they could carry and how they worked. Little to no attention was placed on the human side of these projects. Community perception, community engagement, consent and stakeholder feedback were rarely if ever addressed. This webinar presents the findings from a very recent study that finally sheds some light on the human side of drone delivery projects.

[ WeRobotics ] Continue reading

Posted in Human Robots