Tag Archives: shooting
#438073 Ball-shooting Robot
Le Bron look out – Humanoids will soon beat you at shooting hoops! Well, maybe in the near future…
#437905 New Deep Learning Method Helps Robots ...
One of the biggest things standing in the way of the robot revolution is their inability to adapt. That may be about to change though, thanks to a new approach that blends pre-learned skills on the fly to tackle new challenges.
Put a robot in a tightly-controlled environment and it can quickly surpass human performance at complex tasks, from building cars to playing table tennis. But throw these machines a curve ball and they’re in trouble—just check out this compilation of some of the world’s most advanced robots coming unstuck in the face of notoriously challenging obstacles like sand, steps, and doorways.
The reason robots tend to be so fragile is that the algorithms that control them are often manually designed. If they encounter a situation the designer didn’t think of, which is almost inevitable in the chaotic real world, then they simply don’t have the tools to react.
Rapid advances in AI have provided a potential workaround by letting robots learn how to carry out tasks instead of relying on hand-coded instructions. A particularly promising approach is deep reinforcement learning, where the robot interacts with its environment through a process of trial-and-error and is rewarded for carrying out the correct actions. Over many repetitions it can use this feedback to learn how to accomplish the task at hand.
But the approach requires huge amounts of data to solve even simple tasks. And most of the things we would want a robot to do are actually comprised of many smaller tasks—for instance, delivering a parcel involves learning how to pick an object up, how to walk, how to navigate, and how to pass an object to someone else, among other things.
Training all these sub-tasks simultaneously is hugely complex and far beyond the capabilities of most current AI systems, so many experiments so far have focused on narrow skills. Some have tried to train AI on multiple skills separately and then use an overarching system to flip between these expert sub-systems, but these approaches still can’t adapt to completely new challenges.
Building off this research, though, scientists have now created a new AI system that can blend together expert sub-systems specialized for a specific task. In a paper in Science Robotics, they explain how this allows a four-legged robot to improvise new skills and adapt to unfamiliar challenges in real time.
The technique, dubbed multi-expert learning architecture (MELA), relies on a two-stage training approach. First the researchers used a computer simulation to train two neural networks to carry out two separate tasks: trotting and recovering from a fall.
They then used the models these two networks learned as seeds for eight other neural networks specialized for more specific motor skills, like rolling over or turning left or right. The eight “expert networks” were trained simultaneously along with a “gating network,” which learns how to combine these experts to solve challenges.
Because the gating network synthesizes the expert networks rather than switching them on sequentially, MELA is able to come up with blends of different experts that allow it to tackle problems none could solve alone.
The authors liken the approach to training people in how to play soccer. You start out by getting them to do drills on individual skills like dribbling, passing, or shooting. Once they’ve mastered those, they can then intelligently combine them to deal with more dynamic situations in a real game.
After training the algorithm in simulation, the researchers uploaded it to a four-legged robot and subjected it to a battery of tests, both indoors and outdoors. The robot was able to adapt quickly to tricky surfaces like gravel or pebbles, and could quickly recover from being repeatedly pushed over before continuing on its way.
There’s still some way to go before the approach could be adapted for real-world commercially useful robots. For a start, MELA currently isn’t able to integrate visual perception or a sense of touch; it simply relies on feedback from the robot’s joints to tell it what’s going on around it. The more tasks you ask the robot to master, the more complex and time-consuming the training will get.
Nonetheless, the new approach points towards a promising way to make multi-skilled robots become more than the sum of their parts. As much fun as it is, it seems like laughing at compilations of clumsy robots may soon be a thing of the past.
Image Credit: Yang et al., Science Robotics Continue reading
#437735 Robotic Chameleon Tongue Snatches Nearby ...
Chameleons may be slow-moving lizards, but their tongues can accelerate at astounding speeds, snatching insects before they have any chance of fleeing. Inspired by this remarkable skill, researchers in South Korea have developed a robotic tongue that springs forth quickly to snatch up nearby items.
They envision the tool, called Snatcher, being used by drones and robots that need to collect items without getting too close to them. “For example, a quadrotor with this manipulator will be able to snatch distant targets, instead of hovering and picking up,” explains Gwang-Pil Jung, a researcher at Seoul National University of Science and Technology (SeoulTech) who co-designed the new device.
There has been other research into robotic chameleon tongues, but what’s unique about Snatcher is that it packs chameleon-tongue fast snatching performance into a form factor that’s portable—the total size is 12 x 8.5 x 8.5 centimeters and it weighs under 120 grams. Still, it’s able to fast snatch up to 30 grams from 80 centimeters away in under 600 milliseconds.
Image: SeoulTech
The fast snatching deployable arm is powered by a wind-up spring attached to a motor (a series elastic actuator) combined with an active clutch. The clutch is what allows the single spring to drive both the shooting and the retracting.
To create Snatcher, Jung and a colleague at SeoulTech, Dong-Jun Lee, set about developing a spring-like device that’s controlled by an active clutch combined with a single series elastic actuator. Powered by a wind-up spring, a steel tapeline—analogous to a chameleon’s tongue—passes through two geared feeders. The clutch is what allows the single spring unwinding in one direction to drive both the shooting and the retracting, by switching a geared wheel between driving the forward feeder or the backward feeder.
The end result is a lightweight snatching device that can retrieve an object 0.8 meters away within 600 milliseconds. Jung notes that some other, existing devices designed for retrieval are capable of accomplishing the task quicker, at about 300 milliseconds, but these designs tend to be bulky. A more detailed description of Snatcher was published July 21 in IEEE Robotics and Automation Letters.
Photo: Dong-Jun Lee and Gwang-Pil Jung/SeoulTech
Snatcher’s relative small size means that it can be installed on a DJI Phantom drone. The researchers want to find out if their system can help make package delivery or retrieval faster and safer.
“Our final goal is to install the Snatcher to a commercial drone and achieve meaningful work, such as grasping packages,” says Jung. One of the challenges they still need to address is how to power the actuation system more efficiently. “To solve this issue, we are finding materials having high energy density.” Another improvement is designing a chameleon tongue-like gripper, replacing the simple hook that’s currently used to pick up objects. “We are planning to make a bi-stable gripper to passively grasp a target object as soon as the gripper contacts the object,” says Jung.
< Back to IEEE Journal Watch Continue reading
#437585 Dart-Shooting Drone Attacks Trees for ...
We all know how robots are great at going to places where you can’t (or shouldn’t) send a human. We also know how robots are great at doing repetitive tasks. These characteristics have the potential to make robots ideal for setting up wireless sensor networks in hazardous environments—that is, they could deploy a whole bunch of self-contained sensor nodes that create a network that can monitor a very large area for a very long time.
When it comes to using drones to set up sensor networks, you’ve generally got two options: A drone that just drops sensors on the ground (easy but inaccurate and limited locations), or using a drone with some sort of manipulator on it to stick sensors in specific places (complicated and risky). A third option, under development by researchers at Imperial College London’s Aerial Robotics Lab, provides the accuracy of direct contact with the safety and ease of use of passive dropping by instead using the drone as a launching platform for laser-aimed, sensor-equipped darts.
These darts (which the researchers refer to as aerodynamically stabilized, spine-equipped sensor pods) can embed themselves in relatively soft targets from up to 4 meters away with an accuracy of about 10 centimeters after being fired from a spring-loaded launcher. They’re not quite as accurate as a drone with a manipulator, but it’s pretty good, and the drone can maintain a safe distance from the surface that it’s trying to add a sensor to. Obviously, the spine is only going to work on things like wood, but the researchers point out that there are plenty of attachment mechanisms that could be used, including magnets, adhesives, chemical bonding, or microspines.
Indoor tests using magnets showed the system to be quite reliable, but at close range (within a meter of the target) the darts sometimes bounced off rather than sticking. From between 1 and 4 meters away, the darts stuck between 90 and 100 percent of the time. Initial outdoor tests were also successful, although the system was under manual control. The researchers say that “regular and safe operations should be carried out autonomously,” which, yeah, you’d just have to deal with all of the extra sensing and hardware required to autonomously fly beneath the canopy of a forest. That’s happening next, as the researchers plan to add “vision state estimation and positioning, as well as a depth sensor” to avoid some trees and fire sensors into others.
And if all of that goes well, they’ll consider trying to get each drone to carry multiple darts. Look out, trees: You’re about to be pierced for science.
“Unmanned Aerial Sensor Placement for Cluttered Environments,” by André Farinha, Raphael Zufferey, Peter Zheng, Sophie F. Armanini, and Mirko Kovac from Imperial College London, was published in IEEE Robotics and Automation Letters.
< Back to IEEE Journal Watch Continue reading