Tag Archives: Shift

#437791 Is the Pandemic Spurring a Robot ...

“Are robots really destined to take over restaurant kitchens?” This was the headline of an article published by Eater four years ago. One of the experts interviewed was Siddhartha Srinivasa, at the time professor of the Robotics Institute at Carnegie Mellon University and currently director of Robotics and AI for Amazon. He said, “I’d love to make robots unsexy. It’s weird to say this, but when something becomes unsexy, it means that it works so well that you don’t have to think about it. You don’t stare at your dishwasher as it washes your dishes in fascination, because you know it’s gonna work every time… I want to get robots to that stage of reliability.”

Have we managed to get there over the last four years? Are robots unsexy yet? And how has the pandemic changed the trajectory of automation across industries?

The Covid Effect
The pandemic has had a massive economic impact all over the world, and one of the problems faced by many companies has been keeping their businesses running without putting employees at risk of infection. Many organizations are seeking to remain operational in the short term by automating tasks that would otherwise be carried out by humans. According to Digital Trends, since the start of the pandemic we have seen a significant increase in automation efforts in manufacturing, meat packing, grocery stores and more. In a June survey, 44 percent of corporate financial officers said they were considering more automation in response to coronavirus.

MIT economist David Autor described the economic crisis and the Covid-19 pandemic as “an event that forces automation.” But he added that Covid-19 created a kind of disruption that has forced automation in sectors and activities with a shortage of workers, while at the same time there has been no reduction in demand. This hasn’t taken place in hospitality, where demand has practically disappeared, but it is still present in agriculture and distribution. The latter is being altered by the rapid growth of e-commerce, with more efficient and automated warehouses that can provide better service.

China Leads the Way
China is currently in a unique position to lead the world’s automation economy. Although the country boasts a huge workforce, labor costs have multiplied by 10 over the past 20 years. As the world’s factory, China has a strong incentive to automate its manufacturing sector, which enjoys a solid leadership in high quality products. China is currently the largest and fastest-growing market in the world for industrial robotics, with a 21 percent increase up to $5.4 billion in 2019. This represents one third of global sales. As a result, Chinese companies are developing a significant advantage in terms of learning to work with metallic colleagues.

The reasons behind this Asian dominance are evident: the population has a greater capacity and need for tech adoption. A large percentage of the population will soon be of retirement age, without an equivalent younger demographic to replace it, leading to a pressing need to adopt automation in the short term.

China is well ahead of other countries in restaurant automation. As reported in Bloomberg, in early 2020 UBS Group AG conducted a survey of over 13,000 consumers in different countries and found that 64 percent of Chinese participants had ordered meals through their phones at least once a week, compared to a mere 17 percent in the US. As digital ordering gains ground, robot waiters and chefs are likely not far behind. The West harbors a mistrust towards non-humans that the East does not.

The Robot Evolution
The pandemic was a perfect excuse for robots to replace us. But despite the hype around this idea, robots have mostly disappointed during the pandemic.

Just over 66 different kinds of “social” robots have been piloted in hospitals, health centers, airports, office buildings, and other public and private spaces in response to the pandemic, according to a study from researchers at Pompeu Fabra University (Barcelona, Spain). Their survey looked at 195 robot deployments across 35 countries including China, the US, Thailand, and Hong Kong.

But if the “robot revolution” is a movement in which automation, robotics, and artificial intelligence proliferate through the value chain of various industries, bringing a paradigm shift in how we produce, consume, and distribute products—it hasn’t happened yet.

But there’s a more nuanced answer: rather than a revolution, we’re seeing an incremental robot evolution. It’s a trend that will likely accelerate over the next five years, particularly when 5G takes center stage and robotics as a field leaves behind imitation and evolves independently.

Automation Anxiety
Why don’t we finally welcome the long-promised robotic takeover? Despite progress in AI and increased adoption of industrial robots, consumer-facing robotic products are not nearly as ubiquitous as popular culture predicted decades ago. As Amara’s Law says: “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” It seems we are living through the Gartner hype cycle.

People have a complicated relationship with robots, torn between admiring them, fearing them, rejecting them, and even boycotting them, as has happened in the automobile industry.

Retail robot in a Walmart store. Credit: Bossa Nova Robotics
Walmart terminated its contract with Bossa Nova and withdrew its 1,000 inventory robots from its stores because the company was concerned about how shoppers were reacting to seeing the six-foot robots in the aisles.

With road blocks like this, will the World Economic Forum’s prediction of almost half of tasks being carried out by machines by 2025 come to pass?

At the rate we’re going, it seems unlikely, even with the boost in automation caused by the pandemic. Robotics will continue to advance its capabilities, and will take over more human jobs as it does so, but it’s unlikely we’ll hit a dramatic inflection point that could be described as a “revolution.” Instead, the robot evolution will happen the way most societal change does: incrementally, with time for people to adapt both practically and psychologically.

For now though, robots are still pretty sexy.

Image Credit: charles taylor / Shutterstock.com Continue reading

Posted in Human Robots

#437709 iRobot Announces Major Software Update, ...

Since the release of the very first Roomba in 2002, iRobot’s long-term goal has been to deliver cleaner floors in a way that’s effortless and invisible. Which sounds pretty great, right? And arguably, iRobot has managed to do exactly this, with its most recent generation of robot vacuums that make their own maps and empty their own dustbins. For those of us who trust our robots, this is awesome, but iRobot has gradually been realizing that many Roomba users either don’t want this level of autonomy, or aren’t ready for it.

Today, iRobot is announcing a major new update to its app that represents a significant shift of its overall approach to home robot autonomy. Humans are being brought back into the loop through software that tries to learn when, where, and how you clean so that your Roomba can adapt itself to your life rather than the other way around.

To understand why this is such a shift for iRobot, let’s take a very brief look back at how the Roomba interface has evolved over the last couple of decades. The first generation of Roomba had three buttons on it that allowed (or required) the user to select whether the room being vacuumed was small or medium or large in size. iRobot ditched that system one generation later, replacing the room size buttons with one single “clean” button. Programmable scheduling meant that users no longer needed to push any buttons at all, and with Roombas able to find their way back to their docking stations, all you needed to do was empty the dustbin. And with the most recent few generations (the S and i series), the dustbin emptying is also done for you, reducing direct interaction with the robot to once a month or less.

Image: iRobot

iRobot CEO Colin Angle believes that working toward more intelligent human-robot collaboration is “the brave new frontier” of AI. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” he says. “But thinking that autonomy was the destination was where I was just completely wrong.”

The point that the top-end Roombas are at now reflects a goal that iRobot has been working toward since 2002: With autonomy, scheduling, and the clean base to empty the bin, you can set up your Roomba to vacuum when you’re not home, giving you cleaner floors every single day without you even being aware that the Roomba is hard at work while you’re out. It’s not just hands-off, it’s brain-off. No noise, no fuss, just things being cleaner thanks to the efforts of a robot that does its best to be invisible to you. Personally, I’ve been completely sold on this idea for home robots, and iRobot CEO Colin Angle was as well.

“I probably told you that the perfect Roomba is the Roomba that you never see, you never touch, you just come home everyday and it’s done the right thing,” Angle told us. “But customers don’t want that—they want to be able to control what the robot does. We started to hear this a couple years ago, and it took a while before it sunk in, but it made sense.”

How? Angle compares it to having a human come into your house to clean, but you weren’t allowed to tell them where or when to do their job. Maybe after a while, you’ll build up the amount of trust necessary for that to work, but in the short term, it would likely be frustrating. And people get frustrated with their Roombas for this reason. “The desire to have more control over what the robot does kept coming up, and for me, it required a pretty big shift in my view of what intelligence we were trying to build. Autonomy is not intelligence. We need to do something more.”

That something more, Angle says, is a partnership as opposed to autonomy. It’s an acknowledgement that not everyone has the same level of trust in robots as the people who build them. It’s an understanding that people want to have a feeling of control over their homes, that they have set up the way that they want, and that they’ve been cleaning the way that they want, and a robot shouldn’t just come in and do its own thing.

This change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware.

“Until the robot proves that it knows enough about your home and about the way that you want your home cleaned,” Angle says, “you can’t move forward.” He adds that this is one of those things that seem obvious in retrospect, but even if they’d wanted to address the issue before, they didn’t have the technology to solve the problem. Now they do. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” Angle says. “But thinking that autonomy was the destination was where I was just completely wrong.”

The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.

Where to Clean
Knowing where to clean depends on your Roomba having a detailed and accurate map of its environment. For several generations now, Roombas have been using visual mapping and localization (VSLAM) to build persistent maps of your home. These maps have been used to tell the Roomba to clean in specific rooms, but that’s about it. With the new update, Roombas with cameras will be able to recognize some objects and features in your home, including chairs, tables, couches, and even countertops. The robots will use these features to identify where messes tend to happen so that they can focus on those areas—like around the dining room table or along the front of the couch.

We should take a minute here to clarify how the Roomba is using its camera. The original (primary?) purpose of the camera was for VSLAM, where the robot would take photos of your home, downsample them into QR-code-like patterns of light and dark, and then use those (with the assistance of other sensors) to navigate. Now the camera is also being used to take pictures of other stuff around your house to make that map more useful.

Photo: iRobot

The robots will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table.

This is done through machine learning using a library of images of common household objects from a floor perspective that iRobot had to develop from scratch. Angle clarified for us that this is all done via a neural net that runs on the robot, and that “no recognizable images are ever stored on the robot or kept, and no images ever leave the robot.” Worst case, if all the data iRobot has about your home gets somehow stolen, the hacker would only know that (for example) your dining room has a table in it and the approximate size and location of that table, because the map iRobot has of your place only stores symbolic representations rather than images.

Another useful new feature is intended to help manage the “evil Roomba places” (as Angle puts it) that every home has that cause Roombas to get stuck. If the place is evil enough that Roomba has to call you for help because it gave up completely, Roomba will now remember, and suggest that either you make some changes or that it stops cleaning there, which seems reasonable.

When to Clean
It turns out that the primary cause of mission failure for Roombas is not that they get stuck or that they run out of battery—it’s user cancellation, usually because the robot is getting in the way or being noisy when you don’t want it to be. “If you kill a Roomba’s job because it annoys you,” points out Angle, “how is that robot being a good partner? I think it’s an epic fail.” Of course, it’s not the robot’s fault, because Roombas only clean when we tell them to, which Angle says is part of the problem. “People actually aren’t very good at making their own schedules—they tend to oversimplify, and not think through what their schedules are actually about, which leads to lots of [figurative] Roomba death.”

To help you figure out when the robot should actually be cleaning, the new app will look for patterns in when you ask the robot to clean, and then recommend a schedule based on those patterns. That might mean the robot cleans different areas at different times every day of the week. The app will also make scheduling recommendations that are event-based as well, integrated with other smart home devices. Would you prefer the Roomba to clean every time you leave the house? The app can integrate with your security system (or garage door, or any number of other things) and take care of that for you.

More generally, Roomba will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table. The app will also, to some extent, pay attention to the environment and season. It might suggest increasing your vacuuming frequency if pollen counts are especially high, or if it’s pet shedding season and you have a dog. Unfortunately, Roomba isn’t (yet?) capable of recognizing dogs on its own, so the app has to cheat a little bit by asking you some basic questions.

A Smarter App

Image: iRobot

The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.

The app update, which should be available starting today, is free. The scheduling and recommendations will work on every Roomba model, although for object recognition and anything related to mapping, you’ll need one of the more recent and fancier models with a camera. Future app updates will happen on a more aggressive schedule. Major app releases should happen every six months, with incremental updates happening even more frequently than that.

Angle also told us that overall, this change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware. “It’s not like we’re done doing hardware,” Angle assured us. “But we do think about hardware differently. We view our robots as platforms that have longer life cycles, and each platform will be able to support multiple generations of software. We’ve kind of decoupled robot intelligence from hardware, and that’s a change.”

Angle believes that working toward more intelligent collaboration between humans and robots is “the brave new frontier of artificial intelligence. I expect it to be the frontier for a reasonable amount of time to come,” he adds. “We have a lot of work to do to create the type of easy-to-use experience that consumer robots need.” Continue reading

Posted in Human Robots

#437628 Video Friday: An In-Depth Look at Mesmer ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Bear Robotics, a robotics and artificial intelligence company, and SoftBank Robotics Group, a leading robotics manufacturer and solutions provider, have collaborated to bring a new robot named Servi to the food service and hospitality field.

[ Bear Robotics ]

A literal in-depth look at Engineered Arts’ Mesmer android.

[ Engineered Arts ]

Is your robot running ROS? Is it connected to the Internet? Are you actually in control of it right now? Are you sure?

I appreciate how the researchers admitted to finding two of their own robots as part of the scan, a Baxter and a drone.

[ Brown ]

Smile Robotics describes this as “(possibly) world’s first full-autonomous clear-up-the-table robot.”

We’re not qualified to make a judgement on the world firstness, but personally I hate clearing tables, so this robot has my vote.

Smile Robotics founder and CEO Takashi Ogura, along with chief engineer Mitsutaka Kabasawa and engineer Kazuya Kobayashi, are former Google roboticists. Ogura also worked at SCHAFT. Smile says its robot uses ROS and is controlled by a framework written mainly in Rust, adding: “We are hiring Rustacean Roboticists!”

[ Smile Robotics ]

We’re not entirely sure why, but Panasonic has released plans for an Internet of Things system for hamsters.

We devised a recipe for a “small animal healthcare device” that can measure the weight and activity of small animals, the temperature and humidity of the breeding environment, and manage their health. This healthcare device visualizes the health status and breeding environment of small animals and manages their health to promote early detection of diseases. While imagining the scene where a healthcare device is actually used for an important small animal that we treat with affection, we hope to help overcome the current difficult situation through manufacturing.

[ Panasonic ] via [ RobotStart ]

Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.

The researchers focused on processing functional materials into fiber-form so they could be integrated into fabrics while retaining its advantageous properties. For example, they made variable stiffness fibers out of an epoxy embedded with particles of Field’s metal, an alloy that liquifies at relatively low temperatures. When cool, the particles are solid metal and make the material stiffer; when warm, the particles melt into liquid and make the material softer.

[ Yale ]

In collaboration with Armasuisse and SBB, RSL demonstrated the use of a teleoperated Menzi Muck M545 to clean up a rock slide in Central Switzerland. The machine can be operated from a teloperation platform with visual and motion feedback. The walking excavator features an active chassis that can adapt to uneven terrain.

[ ETHZ RSL ]

An international team of JKU researchers is continuing to develop their vision for robots made out of soft materials. A new article in the journal “Communications Materials” demonstrates just how these kinds of soft machines react using weak magnetic fields to move very quickly. A triangle-shaped robot can roll itself in air at high speed and walk forward when exposed to an alternating in-plane square wave magnetic field (3.5 mT, 1.5 Hz). The diameter of the robot is 18 mm with a thickness of 80 µm. A six-arm robot can grab, transport, and release non-magnetic objects such as a polyurethane foam cube controlled by a permanent magnet.

Okay but tell me more about that cute sheep.

[ JKU ]

Interbotix has this “research level robotic crawler,” which both looks mean and runs ROS, a dangerous combination.

And here’s how it all came together:

[ Interbotix ]

I guess if you call them “loitering missile systems” rather than “drones that blow things up” people are less likely to get upset?

[ AeroVironment ]

In this video, we show a planner for a master dual-arm robot to manipulate tethered tools with an assistant dual-arm robot’s help. The assistant robot provides assistance to the master robot by manipulating the tool cable and avoiding collisions. The provided assistance allows the master robot to perform tool placements on the robot workspace table to regrasp the tool, which would typically fail since the tool cable tension may change the tool positions. It also allows the master robot to perform tool handovers, which would normally cause entanglements or collisions with the cable and the environment without the assistance.

[ Harada Lab ]

This video shows a flexible and robust robotic system for autonomous drawing on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates a robot motion to draw the mapped strokes using visual recognition, grasp pose reasoning, and motion planning.

[ Harada Lab ]

Weekly mobility test. This time the Warthog takes on a fallen tree. Will it cross it? The answer is in the video!

And the answer is: kinda?

[ NORLAB ]

One of the advantages of walking machines is their ability to apply forces in all directions and of various magnitudes to the environment. Many of the multi-legged robots are equipped with point contact feet as these simplify the design and control of the robot. The iStruct project focuses on the development of a foot that allows extensive contact with the environment.

[ DFKI ]

An urgent medical transport was simulated in NASA’s second Systems Integration and Operationalization (SIO) demonstration Sept. 28 with partner Bell Textron Inc. Bell used the remotely-piloted APT 70 to conduct a flight representing an urgent medical transport mission. It is envisioned in the future that an operational APT 70 could provide rapid medical transport for blood, organs, and perishable medical supplies (payload up to 70 pounds). The APT 70 is estimated to move three times as fast as ground transportation.

Always a little suspicious when the video just shows the drone flying, and sitting on the ground, but not that tricky transition between those two states.

[ NASA ]

A Lockheed Martin Robotics Seminar on “Socially Assistive Mobile Robots,” by Yi Guo from Stevens Institute of Technology.

The use of autonomous mobile robots in human environments is on the rise. Assistive robots have been seen in real-world environments, such as robot guides in airports, robot polices in public parks, and patrolling robots in supermarkets. In this talk, I will first present current research activities conducted in the Robotics and Automation Laboratory at Stevens. I’ll then focus on robot-assisted pedestrian regulation, where pedestrian flows are regulated and optimized through passive human-robot interaction.

[ UMD ]

This week’s CMU RI Seminar is by CMU’s Zachary Manchester, on “The World’s Tiniest Space Program.”

The aerospace industry has experienced a dramatic shift over the last decade: Flying a spacecraft has gone from something only national governments and large defense contractors could afford to something a small startup can accomplish on a shoestring budget. A virtuous cycle has developed where lower costs have led to more launches and the growth of new markets for space-based data. However, many barriers remain. This talk will focus on driving these trends to their ultimate limit by harnessing advances in electronics, planning, and control to build spacecraft that cost less than a new smartphone and can be deployed in large numbers.

[ CMU RI ] Continue reading

Posted in Human Robots

#437301 The Global Work Crisis: Automation, the ...

The alarm bell rings. You open your eyes, come to your senses, and slide from dream state to consciousness. You hit the snooze button, and eventually crawl out of bed to the start of yet another working day.

This daily narrative is experienced by billions of people all over the world. We work, we eat, we sleep, and we repeat. As our lives pass day by day, the beating drums of the weekly routine take over and years pass until we reach our goal of retirement.

A Crisis of Work
We repeat the routine so that we can pay our bills, set our kids up for success, and provide for our families. And after a while, we start to forget what we would do with our lives if we didn’t have to go back to work.

In the end, we look back at our careers and reflect on what we’ve achieved. It may have been the hundreds of human interactions we’ve had; the thousands of emails read and replied to; the millions of minutes of physical labor—all to keep the global economy ticking along.

According to Gallup’s World Poll, only 15 percent of people worldwide are actually engaged with their jobs. The current state of “work” is not working for most people. In fact, it seems we as a species are trapped by a global work crisis, which condemns people to cast away their time just to get by in their day-to-day lives.

Technologies like artificial intelligence and automation may help relieve the work burdens of millions of people—but to benefit from their impact, we need to start changing our social structures and the way we think about work now.

The Specter of Automation
Automation has been ongoing since the Industrial Revolution. In recent decades it has taken on a more elegant guise, first with physical robots in production plants, and more recently with software automation entering most offices.

The driving goal behind much of this automation has always been productivity and hence, profits: technology that can act as a multiplier on what a single human can achieve in a day is of huge value to any company. Powered by this strong financial incentive, the quest for automation is growing ever more pervasive.

But if automation accelerates or even continues at its current pace and there aren’t strong social safety nets in place to catch the people who are negatively impacted (such as by losing their jobs), there could be a host of knock-on effects, including more concentrated wealth among a shrinking elite, more strain on government social support, an increase in depression and drug dependence, and even violent social unrest.

It seems as though we are rushing headlong into a major crisis, driven by the engine of accelerating automation. But what if instead of automation challenging our fragile status quo, we view it as the solution that can free us from the shackles of the Work Crisis?

The Way Out
In order to undertake this paradigm shift, we need to consider what society could potentially look like, as well as the problems associated with making this change. In the context of these crises, our primary aim should be for a system where people are not obligated to work to generate the means to survive. This removal of work should not threaten access to food, water, shelter, education, healthcare, energy, or human value. In our current system, work is the gatekeeper to these essentials: one can only access these (and even then often in a limited form), if one has a “job” that affords them.

Changing this system is thus a monumental task. This comes with two primary challenges: providing people without jobs with financial security, and ensuring they maintain a sense of their human value and worth. There are several measures that could be implemented to help meet these challenges, each with important steps for society to consider.

Universal basic income (UBI)

UBI is rapidly gaining support, and it would allow people to become shareholders in the fruits of automation, which would then be distributed more broadly.

UBI trials have been conducted in various countries around the world, including Finland, Kenya, and Spain. The findings have generally been positive on the health and well-being of the participants, and showed no evidence that UBI disincentivizes work, a common concern among the idea’s critics. The most recent popular voice for UBI has been that of former US presidential candidate Andrew Yang, who now runs a non-profit called Humanity Forward.

UBI could also remove wasteful bureaucracy in administering welfare payments (since everyone receives the same amount, there’s no need to prevent false claims), and promote the pursuit of projects aligned with peoples’ skill sets and passions, as well as quantifying the value of tasks not recognized by economic measures like Gross Domestic Product (GDP). This includes looking after children and the elderly at home.

How a UBI can be initiated with political will and social backing and paid for by governments has been hotly debated by economists and UBI enthusiasts. Variables like how much the UBI payments should be, whether to implement taxes such as Yang’s proposed valued added tax (VAT), whether to replace existing welfare payments, the impact on inflation, and the impact on “jobs” from people who would otherwise look for work require additional discussion. However, some have predicted the inevitability of UBI as a result of automation.

Universal healthcare

Another major component of any society is the healthcare of its citizens. A move away from work would further require the implementation of a universal healthcare system to decouple healthcare from jobs. Currently in the US, and indeed many other economies, healthcare is tied to employment.

Universal healthcare such as Medicare in Australia is evidence for the adage “prevention is better than cure,” when comparing the cost of healthcare in the US with Australia on a per capita basis. This has already presented itself as an advancement in the way healthcare is considered. There are further benefits of a healthier population, including less time and money spent on “sick-care.” Healthy people are more likely and more able to achieve their full potential.

Reshape the economy away from work-based value

One of the greatest challenges in a departure from work is for people to find value elsewhere in life. Many people view their identities as being inextricably tied to their jobs, and life without a job is therefore a threat to one’s sense of existence. This presents a shift that must be made at both a societal and personal level.

A person can only seek alternate value in life when afforded the time to do so. To this end, we need to start reducing “work-for-a-living” hours towards zero, which is a trend we are already seeing in Europe. This should not come at the cost of reducing wages pro rata, but rather could be complemented by UBI or additional schemes where people receive dividends for work done by automation. This transition makes even more sense when coupled with the idea of deviating from using GDP as a measure of societal growth, and instead adopting a well-being index based on universal human values like health, community, happiness, and peace.

The crux of this issue is in transitioning away from the view that work gives life meaning and life is about using work to survive, towards a view of living a life that itself is fulfilling and meaningful. This speaks directly to notions from Maslow’s hierarchy of needs, where work largely addresses psychological and safety needs such as shelter, food, and financial well-being. More people should have a chance to grow beyond the most basic needs and engage in self-actualization and transcendence.

The question is largely around what would provide people with a sense of value, and the answers would differ as much as people do; self-mastery, building relationships and contributing to community growth, fostering creativity, and even engaging in the enjoyable aspects of existing jobs could all come into play.

Universal education

With a move towards a society that promotes the values of living a good life, the education system would have to evolve as well. Researchers have long argued for a more nimble education system, but universities and even most online courses currently exist for the dominant purpose of ensuring people are adequately skilled to contribute to the economy. These “job factories” only exacerbate the Work Crisis. In fact, the response often given by educational institutions to the challenge posed by automation is to find new ways of upskilling students, such as ensuring they are all able to code. As alluded to earlier, this is a limited and unimaginative solution to the problem we are facing.

Instead, education should be centered on helping people acknowledge the current crisis of work and automation, teach them how to derive value that is decoupled from work, and enable people to embrace progress as we transition to the new economy.

Disrupting the Status Quo
While we seldom stop to think about it, much of the suffering faced by humanity is brought about by the systemic foe that is the Work Crisis. The way we think about work has brought society far and enabled tremendous developments, but at the same time it has failed many people. Now the status quo is threatened by those very developments as we progress to an era where machines are likely to take over many job functions.

This impending paradigm shift could be a threat to the stability of our fragile system, but only if it is not fully anticipated. If we prepare for it appropriately, it could instead be the key not just to our survival, but to a better future for all.

Image Credit: mostafa meraji from Pixabay Continue reading

Posted in Human Robots

#437269 DeepMind’s Newest AI Programs Itself ...

When Deep Blue defeated world chess champion Garry Kasparov in 1997, it may have seemed artificial intelligence had finally arrived. A computer had just taken down one of the top chess players of all time. But it wasn’t to be.

Though Deep Blue was meticulously programmed top-to-bottom to play chess, the approach was too labor-intensive, too dependent on clear rules and bounded possibilities to succeed at more complex games, let alone in the real world. The next revolution would take a decade and a half, when vastly more computing power and data revived machine learning, an old idea in artificial intelligence just waiting for the world to catch up.

Today, machine learning dominates, mostly by way of a family of algorithms called deep learning, while symbolic AI, the dominant approach in Deep Blue’s day, has faded into the background.

Key to deep learning’s success is the fact the algorithms basically write themselves. Given some high-level programming and a dataset, they learn from experience. No engineer anticipates every possibility in code. The algorithms just figure it.

Now, Alphabet’s DeepMind is taking this automation further by developing deep learning algorithms that can handle programming tasks which have been, to date, the sole domain of the world’s top computer scientists (and take them years to write).

In a paper recently published on the pre-print server arXiv, a database for research papers that haven’t been peer reviewed yet, the DeepMind team described a new deep reinforcement learning algorithm that was able to discover its own value function—a critical programming rule in deep reinforcement learning—from scratch.

Surprisingly, the algorithm was also effective beyond the simple environments it trained in, going on to play Atari games—a different, more complicated task—at a level that was, at times, competitive with human-designed algorithms and achieving superhuman levels of play in 14 games.

DeepMind says the approach could accelerate the development of reinforcement learning algorithms and even lead to a shift in focus, where instead of spending years writing the algorithms themselves, researchers work to perfect the environments in which they train.

Pavlov’s Digital Dog
First, a little background.

Three main deep learning approaches are supervised, unsupervised, and reinforcement learning.

The first two consume huge amounts of data (like images or articles), look for patterns in the data, and use those patterns to inform actions (like identifying an image of a cat). To us, this is a pretty alien way to learn about the world. Not only would it be mind-numbingly dull to review millions of cat images, it’d take us years or more to do what these programs do in hours or days. And of course, we can learn what a cat looks like from just a few examples. So why bother?

While supervised and unsupervised deep learning emphasize the machine in machine learning, reinforcement learning is a bit more biological. It actually is the way we learn. Confronted with several possible actions, we predict which will be most rewarding based on experience—weighing the pleasure of eating a chocolate chip cookie against avoiding a cavity and trip to the dentist.

In deep reinforcement learning, algorithms go through a similar process as they take action. In the Atari game Breakout, for instance, a player guides a paddle to bounce a ball at a ceiling of bricks, trying to break as many as possible. When playing Breakout, should an algorithm move the paddle left or right? To decide, it runs a projection—this is the value function—of which direction will maximize the total points, or rewards, it can earn.

Move by move, game by game, an algorithm combines experience and value function to learn which actions bring greater rewards and improves its play, until eventually, it becomes an uncanny Breakout player.

Learning to Learn (Very Meta)
So, a key to deep reinforcement learning is developing a good value function. And that’s difficult. According to the DeepMind team, it takes years of manual research to write the rules guiding algorithmic actions—which is why automating the process is so alluring. Their new Learned Policy Gradient (LPG) algorithm makes solid progress in that direction.

LPG trained in a number of toy environments. Most of these were “gridworlds”—literally two-dimensional grids with objects in some squares. The AI moves square to square and earns points or punishments as it encounters objects. The grids vary in size, and the distribution of objects is either set or random. The training environments offer opportunities to learn fundamental lessons for reinforcement learning algorithms.

Only in LPG’s case, it had no value function to guide that learning.

Instead, LPG has what DeepMind calls a “meta-learner.” You might think of this as an algorithm within an algorithm that, by interacting with its environment, discovers both “what to predict,” thereby forming its version of a value function, and “how to learn from it,” applying its newly discovered value function to each decision it makes in the future.

Prior work in the area has had some success, but according to DeepMind, LPG is the first algorithm to discover reinforcement learning rules from scratch and to generalize beyond training. The latter was particularly surprising because Atari games are so different from the simple worlds LPG trained in—that is, it had never seen anything like an Atari game.

Time to Hand Over the Reins? Not Just Yet
LPG is still behind advanced human-designed algorithms, the researchers said. But it outperformed a human-designed benchmark in training and even some Atari games, which suggests it isn’t strictly worse, just that it specializes in some environments.

This is where there’s room for improvement and more research.

The more environments LPG saw, the more it could successfully generalize. Intriguingly, the researchers speculate that with enough well-designed training environments, the approach might yield a general-purpose reinforcement learning algorithm.

At the least, though, they say further automation of algorithm discovery—that is, algorithms learning to learn—will accelerate the field. In the near term, it can help researchers more quickly develop hand-designed algorithms. Further out, as self-discovered algorithms like LPG improve, engineers may shift from manually developing the algorithms themselves to building the environments where they learn.

Deep learning long ago left Deep Blue in the dust at games. Perhaps algorithms learning to learn will be a winning strategy in the real world too.

Image credit: Mike Szczepanski / Unsplash Continue reading

Posted in Human Robots