Tag Archives: she

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots

#435224 Can AI Save the Internet from Fake News?

There’s an old proverb that says “seeing is believing.” But in the age of artificial intelligence, it’s becoming increasingly difficult to take anything at face value—literally.

The rise of so-called “deepfakes,” in which different types of AI-based techniques are used to manipulate video content, has reached the point where Congress held its first hearing last month on the potential abuses of the technology. The congressional investigation coincided with the release of a doctored video of Facebook CEO Mark Zuckerberg delivering what appeared to be a sinister speech.

View this post on Instagram

‘Imagine this…’ (2019) Mark Zuckerberg reveals the truth about Facebook and who really owns the future… see more @sheffdocfest VDR technology by @cannyai #spectreknows #privacy #democracy #surveillancecapitalism #dataism #deepfake #deepfakes #contemporaryartwork #digitalart #generativeart #newmediaart #codeart #markzuckerberg #artivism #contemporaryart

A post shared by Bill Posters (@bill_posters_uk) on Jun 7, 2019 at 7:15am PDT

Scientists are scrambling for solutions on how to combat deepfakes, while at the same time others are continuing to refine the techniques for less nefarious purposes, such as automating video content for the film industry.

At one end of the spectrum, for example, researchers at New York University’s Tandon School of Engineering have proposed implanting a type of digital watermark using a neural network that can spot manipulated photos and videos.

The idea is to embed the system directly into a digital camera. Many smartphone cameras and other digital devices already use AI to boost image quality and make other corrections. The authors of the study out of NYU say their prototype platform increased the chances of detecting manipulation from about 45 percent to more than 90 percent without sacrificing image quality.

On the other hand, researchers at Carnegie Mellon University recently hit on a technique for automatically and rapidly converting large amounts of video content from one source into the style of another. In one example, the scientists transferred the facial expressions of comedian John Oliver onto the bespectacled face of late night show host Stephen Colbert.

The CMU team says the method could be a boon to the movie industry, such as by converting black and white films to color, though it also conceded that the technology could be used to develop deepfakes.

Words Matter with Fake News
While the current spotlight is on how to combat video and image manipulation, a prolonged trench warfare on fake news is being fought by academia, nonprofits, and the tech industry.

This isn’t the fake news that some have come to use as a knee-jerk reaction to fact-based information that might be less than flattering to the subject of the report. Rather, fake news is deliberately-created misinformation that is spread via the internet.

In a recent Pew Research Center poll, Americans said fake news is a bigger problem than violent crime, racism, and terrorism. Fortunately, many of the linguistic tools that have been applied to determine when people are being deliberately deceitful can be baked into algorithms for spotting fake news.

That’s the approach taken by a team at the University of Michigan (U-M) to develop an algorithm that was better than humans at identifying fake news—76 percent versus 70 percent—by focusing on linguistic cues like grammatical structure, word choice, and punctuation.

For example, fake news tends to be filled with hyperbole and exaggeration, using terms like “overwhelming” or “extraordinary.”

“I think that’s a way to make up for the fact that the news is not quite true, so trying to compensate with the language that’s being used,” Rada Mihalcea, a computer science and engineering professor at U-M, told Singularity Hub.

The paper “Automatic Detection of Fake News” was based on the team’s previous studies on how people lie in general, without necessarily having the intention of spreading fake news, she said.

“Deception is a complicated and complex phenomenon that requires brain power,” Mihalcea noted. “That often results in simpler language, where you have shorter sentences or shorter documents.”

AI Versus AI
While most fake news is still churned out by humans with identifiable patterns of lying, according to Mihalcea, other researchers are already anticipating how to detect misinformation manufactured by machines.

A group led by Yejin Choi, with the Allen Institute of Artificial Intelligence and the University of Washington in Seattle, is one such team. The researchers recently introduced the world to Grover, an AI platform that is particularly good at catching autonomously-generated fake news because it’s equally good at creating it.

“This is due to a finding that is perhaps counterintuitive: strong generators for neural fake news are themselves strong detectors of it,” wrote Rowan Zellers, a PhD student and team member, in a Medium blog post. “A generator of fake news will be most familiar with its own peculiarities, such as using overly common or predictable words, as well as the peculiarities of similar generators.”

The team found that the best current discriminators can classify neural fake news from real, human-created text with 73 percent accuracy. Grover clocks in with 92 percent accuracy based on a training set of 5,000 neural network-generated fake news samples. Zellers wrote that Grover got better at scale, identifying 97.5 percent of made-up machine mumbo jumbo when trained on 80,000 articles.

It performed almost as well against fake news created by a powerful new text-generation system called GPT-2 built by OpenAI, a nonprofit research lab founded by Elon Musk, classifying 96.1 percent of the machine-written articles.

OpenAI had so feared that the platform could be abused that it has only released limited versions of the software. The public can play with a scaled-down version posted by a machine learning engineer named Adam King, where the user types in a short prompt and GPT-2 bangs out a short story or poem based on the snippet of text.

No Silver AI Bullet
While real progress is being made against fake news, the challenges of using AI to detect and correct misinformation are abundant, according to Hugo Williams, outreach manager for Logically, a UK-based startup that is developing different detectors using elements of deep learning and natural language processing, among others. He explained that the Logically models analyze information based on a three-pronged approach.

Publisher metadata: Is the article from a known, reliable, and trustworthy publisher with a history of credible journalism?
Network behavior: Is the article proliferating through social platforms and networks in ways typically associated with misinformation?
Content: The AI scans articles for hundreds of known indicators typically found in misinformation.

“There is no single algorithm which is capable of doing this,” Williams wrote in an email to Singularity Hub. “Even when you have a collection of different algorithms which—when combined—can give you relatively decent indications of what is unreliable or outright false, there will always need to be a human layer in the pipeline.”

The company released a consumer app in India back in February just before that country’s election cycle that was a “great testing ground” to refine its technology for the next app release, which is scheduled in the UK later this year. Users can submit articles for further scrutiny by a real person.

“We see our technology not as replacing traditional verification work, but as a method of simplifying and streamlining a very manual process,” Williams said. “In doing so, we’re able to publish more fact checks at a far quicker pace than other organizations.”

“With heightened analysis and the addition of more contextual information around the stories that our users are reading, we are not telling our users what they should or should not believe, but encouraging critical thinking based upon reliable, credible, and verified content,” he added.

AI may never be able to detect fake news entirely on its own, but it can help us be smarter about what we read on the internet.

Image Credit: Dennis Lytyagin / Shutterstock.com Continue reading

Posted in Human Robots

#435199 The Rise of AI Art—and What It Means ...

Artificially intelligent systems are slowly taking over tasks previously done by humans, and many processes involving repetitive, simple movements have already been fully automated. In the meantime, humans continue to be superior when it comes to abstract and creative tasks.

However, it seems like even when it comes to creativity, we’re now being challenged by our own creations.

In the last few years, we’ve seen the emergence of hundreds of “AI artists.” These complex algorithms are creating unique (and sometimes eerie) works of art. They’re generating stunning visuals, profound poetry, transcendent music, and even realistic movie scripts. The works of these AI artists are raising questions about the nature of art and the role of human creativity in future societies.

Here are a few works of art created by non-human entities.

Unsecured Futures
by Ai.Da

Ai-Da Robot with Painting. Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations.
Earlier this month we saw the announcement of Ai.Da, considered the first ultra-realistic drawing robot artist. Her mechanical abilities, combined with AI-based algorithms, allow her to draw, paint, and even sculpt. She is able to draw people using her artificial eye and a pencil in her hand. Ai.Da’s artwork and first solo exhibition, Unsecured Futures, will be showcased at Oxford University in July.

Ai-Da Cartesian Painting. Image Credit: Ai-Da Artworks. Published with permission from Midas Public Relations.
Obviously Ai.Da has no true consciousness, thoughts, or feelings. Despite that, the (human) organizers of the exhibition believe that Ai.Da serves as a basis for crucial conversations about the ethics of emerging technologies. The exhibition will serve as a stimulant for engaging with critical questions about what kind of future we ought to create via such technologies.

The exhibition’s creators wrote, “Humans are confident in their position as the most powerful species on the planet, but how far do we actually want to take this power? To a Brave New World (Nightmare)? And if we use new technologies to enhance the power of the few, we had better start safeguarding the future of the many.”

Google’s PoemPortraits
Our transcendence adorns,
That society of the stars seem to be the secret.

The two lines of poetry above aren’t like any poetry you’ve come across before. They are generated by an algorithm that was trained via deep learning neural networks trained on 20 million words of 19th-century poetry.

Google’s latest art project, named PoemPortraits, takes a word of your suggestion and generates a unique poem (once again, a collaboration of man and machine). You can even add a selfie in the final “PoemPortrait.” Artist Es Devlin, the project’s creator, explains that the AI “doesn’t copy or rework existing phrases, but uses its training material to build a complex statistical model. As a result, the algorithm generates original phrases emulating the style of what it’s been trained on.”

The generated poetry can sometimes be profound, and sometimes completely meaningless.But what makes the PoemPortraits project even more interesting is that it’s a collaborative project. All of the generated lines of poetry are combined to form a consistently growing collective poem, which you can view after your lines are generated. In many ways, the final collective poem is a collaboration of people from around the world working with algorithms.

Faceless Portraits Transcending Time
AICAN + Ahmed Elgammal

Image Credit: AICAN + Ahmed Elgammal | Faceless Portrait #2 (2019) | Artsy.
In March of this year, an AI artist called AICAN and its creator Ahmed Elgammal took over a New York gallery. The exhibition at HG Commentary showed two series of canvas works portraying harrowing, dream-like faceless portraits.

The exhibition was not simply credited to a machine, but rather attributed to the collaboration between a human and machine. Ahmed Elgammal is the founder and director of the Art and Artificial Intelligence Laboratory at Rutgers University. He considers AICAN to not only be an autonomous AI artist, but also a collaborator for artistic endeavors.

How did AICAN create these eerie faceless portraits? The system was presented with 100,000 photos of Western art from over five centuries, allowing it to learn the aesthetics of art via machine learning. It then drew from this historical knowledge and the mandate to create something new to create an artwork without human intervention.

Genesis
by AIVA Technologies

Listen to the score above. While you do, reflect on the fact that it was generated by an AI.

AIVA is an AI that composes soundtrack music for movies, commercials, games, and trailers. Its creative works span a wide range of emotions and moods. The scores it generates are indistinguishable from those created by the most talented human composers.

The AIVA music engine allows users to generate original scores in multiple ways. One is to upload an existing human-generated score and select the temp track to base the composition process on. Another method involves using preset algorithms to compose music in pre-defined styles, including everything from classical to Middle Eastern.

Currently, the platform is promoted as an opportunity for filmmakers and producers. But in the future, perhaps every individual will have personalized music generated for them based on their interests, tastes, and evolving moods. We already have algorithms on streaming websites recommending novel music to us based on our interests and history. Soon, algorithms may be used to generate music and other works of art that are tailored to impact our unique psyches.

The Future of Art: Pushing Our Creative Limitations
These works of art are just a glimpse into the breadth of the creative works being generated by algorithms and machines. Many of us will rightly fear these developments. We have to ask ourselves what our role will be in an era where machines are able to perform what we consider complex, abstract, creative tasks. The implications on the future of work, education, and human societies are profound.

At the same time, some of these works demonstrate that AI artists may not necessarily represent a threat to human artists, but rather an opportunity for us to push our creative boundaries. The most exciting artistic creations involve collaborations between humans and machines.

We have always used our technological scaffolding to push ourselves beyond our biological limitations. We use the telescope to extend our line of sight, planes to fly, and smartphones to connect with others. Our machines are not always working against us, but rather working as an extension of our minds. Similarly, we could use our machines to expand on our creativity and push the boundaries of art.

Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations. Continue reading

Posted in Human Robots

#435098 Coming of Age in the Age of AI: The ...

The first generation to grow up entirely in the 21st century will never remember a time before smartphones or smart assistants. They will likely be the first children to ride in self-driving cars, as well as the first whose healthcare and education could be increasingly turned over to artificially intelligent machines.

Futurists, demographers, and marketers have yet to agree on the specifics of what defines the next wave of humanity to follow Generation Z. That hasn’t stopped some, like Australian futurist Mark McCrindle, from coining the term Generation Alpha, denoting a sort of reboot of society in a fully-realized digital age.

“In the past, the individual had no power, really,” McCrindle told Business Insider. “Now, the individual has great control of their lives through being able to leverage this world. Technology, in a sense, transformed the expectations of our interactions.”

No doubt technology may impart Marvel superhero-like powers to Generation Alpha that even tech-savvy Millennials never envisioned over cups of chai latte. But the powers of machine learning, computer vision, and other disciplines under the broad category of artificial intelligence will shape this yet unformed generation more definitively than any before it.

What will it be like to come of age in the Age of AI?

The AI Doctor Will See You Now
Perhaps no other industry is adopting and using AI as much as healthcare. The term “artificial intelligence” appears in nearly 90,000 publications from biomedical literature and research on the PubMed database.

AI is already transforming healthcare and longevity research. Machines are helping to design drugs faster and detect disease earlier. And AI may soon influence not only how we diagnose and treat illness in children, but perhaps how we choose which children will be born in the first place.

A study published earlier this month in NPJ Digital Medicine by scientists from Weill Cornell Medicine used 12,000 photos of human embryos taken five days after fertilization to train an AI algorithm on how to tell which in vitro fertilized embryo had the best chance of a successful pregnancy based on its quality.

Investigators assigned each embryo a grade based on various aspects of its appearance. A statistical analysis then correlated that grade with the probability of success. The algorithm, dubbed Stork, was able to classify the quality of a new set of images with 97 percent accuracy.

“Our algorithm will help embryologists maximize the chances that their patients will have a single healthy pregnancy,” said Dr. Olivier Elemento, director of the Caryl and Israel Englander Institute for Precision Medicine at Weill Cornell Medicine, in a press release. “The IVF procedure will remain the same, but we’ll be able to improve outcomes by harnessing the power of artificial intelligence.”

Other medical researchers see potential in applying AI to detect possible developmental issues in newborns. Scientists in Europe, working with a Finnish AI startup that creates seizure monitoring technology, have developed a technique for detecting movement patterns that might indicate conditions like cerebral palsy.

Published last month in the journal Acta Pediatrica, the study relied on an algorithm to extract the movements from a newborn, turning it into a simplified “stick figure” that medical experts could use to more easily detect clinically relevant data.

The researchers are continuing to improve the datasets, including using 3D video recordings, and are now developing an AI-based method for determining if a child’s motor maturity aligns with its true age. Meanwhile, a study published in February in Nature Medicine discussed the potential of using AI to diagnose pediatric disease.

AI Gets Classy
After being weaned on algorithms, Generation Alpha will hit the books—about machine learning.

China is famously trying to win the proverbial AI arms race by spending billions on new technologies, with one Chinese city alone pledging nearly $16 billion to build a smart economy based on artificial intelligence.

To reach dominance by its stated goal of 2030, Chinese cities are also incorporating AI education into their school curriculum. Last year, China published its first high school textbook on AI, according to the South China Morning Post. More than 40 schools are participating in a pilot program that involves SenseTime, one of the country’s biggest AI companies.

In the US, where it seems every child has access to their own AI assistant, researchers are just beginning to understand how the ubiquity of intelligent machines will influence the ways children learn and interact with their highly digitized environments.

Sandra Chang-Kredl, associate professor of the department of education at Concordia University, told The Globe and Mail that AI could have detrimental effects on learning creativity or emotional connectedness.

Similar concerns inspired Stefania Druga, a member of the Personal Robots group at the MIT Media Lab (and former Education Teaching Fellow at SU), to study interactions between children and artificial intelligence devices in order to encourage positive interactions.

Toward that goal, Druga created Cognimates, a platform that enables children to program and customize their own smart devices such as Alexa or even a smart, functional robot. The kids can also use Cognimates to train their own AI models or even build a machine learning version of Rock Paper Scissors that gets better over time.

“I believe it’s important to also introduce young people to the concepts of AI and machine learning through hands-on projects so they can make more informed and critical use of these technologies,” Druga wrote in a Medium blog post.

Druga is also the founder of Hackidemia, an international organization that sponsors workshops and labs around the world to introduce kids to emerging technologies at an early age.

“I think we are in an arms race in education with the advancement of technology, and we need to start thinking about AI literacy before patterns of behaviors for children and their families settle in place,” she wrote.

AI Goes Back to School
It also turns out that AI has as much to learn from kids. More and more researchers are interested in understanding how children grasp basic concepts that still elude the most advanced machine minds.

For example, developmental psychologist Alison Gopnik has written and lectured extensively about how studying the minds of children can provide computer scientists clues on how to improve machine learning techniques.

In an interview on Vox, she described that while DeepMind’s AlpahZero was trained to be a chessmaster, it struggles with even the simplest changes in the rules, such as allowing the bishop to move horizontally instead of vertically.

“A human chess player, even a kid, will immediately understand how to transfer that new rule to their playing of the game,” she noted. “Flexibility and generalization are something that even human one-year-olds can do but that the best machine learning systems have a much harder time with.”

Last year, the federal defense agency DARPA announced a new program aimed at improving AI by teaching it “common sense.” One of the chief strategies is to develop systems for “teaching machines through experience, mimicking the way babies grow to understand the world.”

Such an approach is also the basis of a new AI program at MIT called the MIT Quest for Intelligence.

The research leverages cognitive science to understand human intelligence, according to an article on the project in MIT Technology Review, such as exploring how young children visualize the world using their own innate 3D models.

“Children’s play is really serious business,” said Josh Tenenbaum, who leads the Computational Cognitive Science lab at MIT and his head of the new program. “They’re experiments. And that’s what makes humans the smartest learners in the known universe.”

In a world increasingly driven by smart technologies, it’s good to know the next generation will be able to keep up.

Image Credit: phoelixDE / Shutterstock.com Continue reading

Posted in Human Robots

#434792 Extending Human Longevity With ...

Lizards can regrow entire limbs. Flatworms, starfish, and sea cucumbers regrow entire bodies. Sharks constantly replace lost teeth, often growing over 20,000 teeth throughout their lifetimes. How can we translate these near-superpowers to humans?

The answer: through the cutting-edge innovations of regenerative medicine.

While big data and artificial intelligence transform how we practice medicine and invent new treatments, regenerative medicine is about replenishing, replacing, and rejuvenating our physical bodies.

In Part 5 of this blog series on Longevity and Vitality, I detail three of the regenerative technologies working together to fully augment our vital human organs.

Replenish: Stem cells, the regenerative engine of the body
Replace: Organ regeneration and bioprinting
Rejuvenate: Young blood and parabiosis

Let’s dive in.

Replenish: Stem Cells – The Regenerative Engine of the Body
Stem cells are undifferentiated cells that can transform into specialized cells such as heart, neurons, liver, lung, skin and so on, and can also divide to produce more stem cells.

In a child or young adult, these stem cells are in large supply, acting as a built-in repair system. They are often summoned to the site of damage or inflammation to repair and restore normal function.

But as we age, our supply of stem cells begins to diminish as much as 100- to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing your body.

Imagine your stem cells as a team of repairmen in your newly constructed mansion. When the mansion is new and the repairmen are young, they can fix everything perfectly. But as the repairmen age and reduce in number, your mansion eventually goes into disrepair and finally crumbles.

What if you could restore and rejuvenate your stem cell population?

One option to accomplish this restoration and rejuvenation is to extract and concentrate your own autologous adult stem cells from places like your adipose (or fat) tissue or bone marrow.

These stem cells, however, are fewer in number and have undergone mutations (depending on your age) from their original ‘software code.’ Many scientists and physicians now prefer an alternative source, obtaining stem cells from the placenta or umbilical cord, the leftovers of birth.

These stem cells, available in large supply and expressing the undamaged software of a newborn, can be injected into joints or administered intravenously to rejuvenate and revitalize.

Think of these stem cells as chemical factories generating vital growth factors that can help to reduce inflammation, fight autoimmune disease, increase muscle mass, repair joints, and even revitalize skin and grow hair.

Over the last decade, the number of publications per year on stem cell-related research has increased 40x, and the stem cell market is expected to increase to $297 billion by 2022.

Rising research and development initiatives to develop therapeutic options for chronic diseases and growing demand for regenerative treatment options are the most significant drivers of this budding industry.

Biologists led by Kohji Nishida at Osaka University in Japan have discovered a new way to nurture and grow the tissues that make up the human eyeball. The scientists are able to grow retinas, corneas, the eye’s lens, and more, using only a small sample of adult skin.

In a Stanford study, seven of 18 stroke victims who agreed to stem cell treatments showed remarkable motor function improvements. This treatment could work for other neurodegenerative conditions such as Alzheimer’s, Parkinson’s, and ALS.

Doctors from the USC Neurorestoration Center and Keck Medicine of USC injected stem cells into the damaged cervical spine of a recently paralyzed 21-year-old man. Three months later, he showed dramatic improvement in sensation and movement of both arms.

In 2019, doctors in the U.K. cured a patient with HIV for the second time ever thanks to the efficacy of stem cells. After giving the cancer patient (who also had HIV) an allogeneic haematopoietic (e.g. blood) stem cell treatment for his Hodgkin’s lymphoma, the patient went into long-term HIV remission—18 months and counting at the time of the study’s publication.

Replace: Organ Regeneration and 3D Printing
Every 10 minutes, someone is added to the US organ transplant waiting list, totaling over 113,000 people waiting for replacement organs as of January 2019.

Countless more people in need of ‘spare parts’ never make it onto the waiting list. And on average, 20 people die each day while waiting for a transplant.

As a result, 35 percent of all US deaths (~900,000 people) could be prevented or delayed with access to organ replacements.

The excessive demand for donated organs will only intensify as technologies like self-driving cars make the world safer, given that many organ donors result from auto and motorcycle accidents. Safer vehicles mean less accidents and donations.

Clearly, replacement and regenerative medicine represent a massive opportunity.

Organ Entrepreneurs
Enter United Therapeutics CEO, Dr. Martine Rothblatt. A one-time aerospace entrepreneur (she was the founder of Sirius Satellite Radio), Rothblatt changed careers in the 1990s after her daughter developed a rare lung disease.

Her moonshot today is to create an industry of replacement organs. With an initial focus on diseases of the lung, Rothblatt set out to create replacement lungs. To accomplish this goal, her company United Therapeutics has pursued a number of technologies in parallel.

3D Printing Lungs
In 2017, United teamed up with one of the world’s largest 3D printing companies, 3D Systems, to build a collagen bioprinter and is paying another company, 3Scan, to slice up lungs and create detailed maps of their interior.

This 3D Systems bioprinter now operates according to a method called stereolithography. A UV laser flickers through a shallow pool of collagen doped with photosensitive molecules. Wherever the laser lingers, the collagen cures and becomes solid.

Gradually, the object being printed is lowered and new layers are added. The printer can currently lay down collagen at a resolution of around 20 micrometers, but will need to achieve resolution of a micrometer in size to make the lung functional.

Once a collagen lung scaffold has been printed, the next step is to infuse it with human cells, a process called recellularization.

The goal here is to use stem cells that grow on scaffolding and differentiate, ultimately providing the proper functionality. Early evidence indicates this approach can work.

In 2018, Harvard University experimental surgeon Harald Ott reported that he pumped billions of human cells (from umbilical cords and diced lungs) into a pig lung stripped of its own cells. When Ott’s team reconnected it to a pig’s circulation, the resulting organ showed rudimentary function.

Humanizing Pig Lungs
Another of Rothblatt’s organ manufacturing strategies is called xenotransplantation, the idea of transplanting an animal’s organs into humans who need a replacement.

Given the fact that adult pig organs are similar in size and shape to those of humans, United Therapeutics has focused on genetically engineering pigs to allow humans to use their organs. “It’s actually not rocket science,” said Rothblatt in her 2015 TED talk. “It’s editing one gene after another.”

To accomplish this goal, United Therapeutics made a series of investments in companies such as Revivicor Inc. and Synthetic Genomics Inc., and signed large funding agreements with the University of Maryland, University of Alabama, and New York Presbyterian/Columbia University Medical Center to create xenotransplantation programs for new hearts, kidneys, and lungs, respectively. Rothblatt hopes to see human translation in three to four years.

In preparation for that day, United Therapeutics owns a 132-acre property in Research Triangle Park and built a 275,000-square-foot medical laboratory that will ultimately have the capability to annually produce up to 1,000 sets of healthy pig lungs—known as xenolungs—from genetically engineered pigs.

Lung Ex Vivo Perfusion Systems
Beyond 3D printing and genetically engineering pig lungs, Rothblatt has already begun implementing a third near-term approach to improve the supply of lungs across the US.

Only about 30 percent of potential donor lungs meet transplant criteria in the first place; of those, only about 85 percent of those are usable once they arrive at the surgery center. As a result, nearly 75 percent of possible lungs never make it to the recipient in need.

What if these lungs could be rejuvenated? This concept informs Dr. Rothblatt’s next approach.

In 2016, United Therapeutics invested $41.8 million in TransMedics Inc., an Andover, Massachusetts company that develops ex vivo perfusion systems for donor lungs, hearts, and kidneys.

The XVIVO Perfusion System takes marginal-quality lungs that initially failed to meet transplantation standard-of-care criteria and perfuses and ventilates them at normothermic conditions, providing an opportunity for surgeons to reassess transplant suitability.

Rejuvenate Young Blood and Parabiosis
In HBO’s parody of the Bay Area tech community, Silicon Valley, one of the episodes (Season 4, Episode 5) is named “The Blood Boy.”

In this installment, tech billionaire Gavin Belson (Matt Ross) is meeting with Richard Hendricks (Thomas Middleditch) and his team, speaking about the future of the decentralized internet. A young, muscled twenty-something disrupts the meeting when he rolls in a transfusion stand and silently hooks an intravenous connection between himself and Belson.

Belson then introduces the newcomer as his “transfusion associate” and begins to explain the science of parabiosis: “Regular transfusions of the blood of a younger physically fit donor can significantly retard the aging process.”

While the sitcom is fiction, that science has merit, and the scenario portrayed in the episode is already happening today.

On the first point, research at Stanford and Harvard has demonstrated that older animals, when transfused with the blood of young animals, experience regeneration across many tissues and organs.

The opposite is also true: young animals, when transfused with the blood of older animals, experience accelerated aging. But capitalizing on this virtual fountain of youth has been tricky.

Ambrosia
One company, a San Francisco-based startup called Ambrosia, recently commenced one of the trials on parabiosis. Their protocol is simple: Healthy participants aged 35 and older get a transfusion of blood plasma from donors under 25, and researchers monitor their blood over the next two years for molecular indicators of health and aging.

Ambrosia’s founder Jesse Karmazin became interested in launching a company around parabiosis after seeing impressive data from animals and studies conducted abroad in humans: In one trial after another, subjects experience a reversal of aging symptoms across every major organ system. “The effects seem to be almost permanent,” he said. “It’s almost like there’s a resetting of gene expression.”

Infusing your own cord blood stem cells as you age may have tremendous longevity benefits. Following an FDA press release in February 2019, Ambrosia halted its consumer-facing treatment after several months of operation.

Understandably, the FDA raised concerns about the practice of parabiosis because to date, there is a marked lack of clinical data to support the treatment’s effectiveness.

Elevian
On the other end of the reputability spectrum is a startup called Elevian, spun out of Harvard University. Elevian is approaching longevity with a careful, scientifically validated strategy. (Full Disclosure: I am both an advisor to and investor in Elevian.)

CEO Mark Allen, MD, is joined by a dozen MDs and Ph.Ds out of Harvard. Elevian’s scientific founders started the company after identifying specific circulating factors that may be responsible for the “young blood” effect.

One example: A naturally occurring molecule known as “growth differentiation factor 11,” or GDF11, when injected into aged mice, reproduces many of the regenerative effects of young blood, regenerating heart, brain, muscles, lungs, and kidneys.

More specifically, GDF11 supplementation reduces age-related cardiac hypertrophy, accelerates skeletal muscle repair, improves exercise capacity, improves brain function and cerebral blood flow, and improves metabolism.

Elevian is developing a number of therapeutics that regulate GDF11 and other circulating factors. The goal is to restore our body’s natural regenerative capacity, which Elevian believes can address some of the root causes of age-associated disease with the promise of reversing or preventing many aging-related diseases and extending the healthy lifespan.

Conclusion
In 1992, futurist Leland Kaiser coined the term “regenerative medicine”:

“A new branch of medicine will develop that attempts to change the course of chronic disease and in many instances will regenerate tired and failing organ systems.”

Since then, the powerful regenerative medicine industry has grown exponentially, and this rapid growth is anticipated to continue.

A dramatic extension of the human healthspan is just over the horizon. Soon, we’ll all have the regenerative superpowers previously relegated to a handful of animals and comic books.

What new opportunities open up when anybody, anywhere, and at anytime can regenerate, replenish, and replace entire organs and metabolic systems on command?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Giovanni Cancemi / Shutterstock.com Continue reading

Posted in Human Robots