Tag Archives: shaped

#436988 This Week’s Awesome Tech Stories From ...

FUTURE
We Need to Start Modeling Alternative Futures
Andrew Marino | The Verge
“‘I’m going to be the first person to tell you if you gave me all the data in the world and all the computers in the world, at this moment in time I cannot tell you what things are going to look like in three months,’ [says quantitative futurist Amy Webb.] ‘And that’s fine because that tells us we still have some agency. …The good news is if you are willing to lean into uncertainty and to accept the fact that you can’t control everything, but also you are not helpless in whatever comes next.'”

GOVERNANCE
The Dangers of Moving All of Democracy Online
Marion Fourcade and Henry Farrell | Wired
“As we try to protect democracy from coronavirus, we must see technology as a scalpel, not a sledgehammer. …If we’re very lucky, we’ll have restrained, targeted, and temporary measures that will be effective against the pandemic. If we’re not, we’ll create an open-ended, sweeping surveillance system that will undermine democratic freedoms without doing much to stop coronavirus.”

TECHNOLOGY
Why Does It Suddenly Feel Like 1999 on the Internet?
Tanya Basu and Karen Hao | MIT Technology Review
“You see it in the renewed willingness of people to form virtual relationships. …Now casually hanging out with randos (virtually, of course) is cool again. People are joining video calls with people they’ve never met for everything from happy hours to book clubs to late-night flirting. They’re sharing in collective moments of creativity on Google Sheets, looking for new pandemic pen pals, and sending softer, less pointed emails.”

SCIENCE
Covid-19 Changed How the World Does Science, Together
Matt Apuzzo and David D. Kirkpatrick | The New York Times
“While political leaders have locked their borders, scientists have been shattering theirs, creating a global collaboration unlike any in history. Never before, researchers say, have so many experts in so many countries focused simultaneously on a single topic and with such urgency. Nearly all other research has ground to a halt.”

ARTIFICIAL INTELLIGENCE
A Debate Between AI Experts Shows a Battle Over the Technology’s Future
Karen Hao | MIT Technology Review
“The disagreements [the two experts] expressed mirror many of the clashes within the field, highlighting how powerfully the technology has been shaped by a persistent battle of ideas and how little certainty there is about where it’s headed next.”

BIOTECH
Meet the Xenobots, Virtual Creatures Brought to Life
Joshua Sokol | The New York Times
“If the last few decades of progress in artificial intelligence and in molecular biology hooked up, their love child—a class of life unlike anything that has ever lived—might resemble the dark specks doing lazy laps around a petri dish in a laboratory at Tufts University.”

ENVIRONMENT
Rivian Wants to Bring Electric Trucks to the Masses
Jon Gertner | Wired
“The pickup walks a careful line between Detroit traditionalism and EV iconoclasm. Where Tesla’s forthcoming Cybertruck looks like origami on wheels, the R1T, slim and limber, looks more like an F-150 on a gym-and-yoga regimen.”

ENERGY
The Promise and Peril of Nuclear Power
John R. Quain | Gizmodo
“To save us from the coming climate catastrophe, we need an energy hero, boasting limitless power and no greenhouse gas emissions (or nearly none). So it’s time, say some analysts, to resuscitate the nuclear energy industry. Doing so could provide carbon-free energy. But any plan to make nuclear power a big part of the energy mix also comes with serious financial risks as well as questions about if there’s enough time to enlist an army of nuclear power plants in the battle against the climate crisis.”

Image Credit: Jason Rosewell / Unsplash Continue reading

Posted in Human Robots

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots

#436470 Retail Robots Are on the Rise—at Every ...

The robots are coming! The robots are coming! On our sidewalks, in our skies, in our every store… Over the next decade, robots will enter the mainstream of retail.

As countless robots work behind the scenes to stock shelves, serve customers, and deliver products to our doorstep, the speed of retail will accelerate.

These changes are already underway. In this blog, we’ll elaborate on how robots are entering the retail ecosystem.

Let’s dive in.

Robot Delivery
On August 3rd, 2016, Domino’s Pizza introduced the Domino’s Robotic Unit, or “DRU” for short. The first home delivery pizza robot, the DRU looks like a cross between R2-D2 and an oversized microwave.

LIDAR and GPS sensors help it navigate, while temperature sensors keep hot food hot and cold food cold. Already, it’s been rolled out in ten countries, including New Zealand, France, and Germany, but its August 2016 debut was critical—as it was the first time we’d seen robotic home delivery.

And it won’t be the last.

A dozen or so different delivery bots are fast entering the market. Starship Technologies, for instance, a startup created by Skype founders Janus Friis and Ahti Heinla, has a general-purpose home delivery robot. Right now, the system is an array of cameras and GPS sensors, but upcoming models will include microphones, speakers, and even the ability—via AI-driven natural language processing—to communicate with customers. Since 2016, Starship has already carried out 50,000 deliveries in over 100 cities across 20 countries.

Along similar lines, Nuro—co-founded by Jiajun Zhu, one of the engineers who helped develop Google’s self-driving car—has a miniature self-driving car of its own. Half the size of a sedan, the Nuro looks like a toaster on wheels, except with a mission. This toaster has been designed to carry cargo—about 12 bags of groceries (version 2.0 will carry 20)—which it’s been doing for select Kroger stores since 2018. Domino’s also partnered with Nuro in 2019.

As these delivery bots take to our streets, others are streaking across the sky.

Back in 2016, Amazon came first, announcing Prime Air—the e-commerce giant’s promise of drone delivery in 30 minutes or less. Almost immediately, companies ranging from 7-Eleven and Walmart to Google and Alibaba jumped on the bandwagon.

While critics remain doubtful, the head of the FAA’s drone integration department recently said that drone deliveries may be “a lot closer than […] the skeptics think. [Companies are] getting ready for full-blown operations. We’re processing their applications. I would like to move as quickly as I can.”

In-Store Robots
While delivery bots start to spare us trips to the store, those who prefer shopping the old-fashioned way—i.e., in person—also have plenty of human-robot interaction in store. In fact, these robotics solutions have been around for a while.

In 2010, SoftBank introduced Pepper, a humanoid robot capable of understanding human emotion. Pepper is cute: 4 feet tall, with a white plastic body, two black eyes, a dark slash of a mouth, and a base shaped like a mermaid’s tail. Across her chest is a touch screen to aid in communication. And there’s been a lot of communication. Pepper’s cuteness is intentional, as it matches its mission: help humans enjoy life as much as possible.

Over 12,000 Peppers have been sold. She serves ice cream in Japan, greets diners at a Pizza Hut in Singapore, and dances with customers at a Palo Alto electronics store. More importantly, Pepper’s got company.

Walmart uses shelf-stocking robots for inventory control. Best Buy uses a robo-cashier, allowing select locations to operate 24-7. And Lowe’s Home Improvement employs the LoweBot—a giant iPad on wheels—to help customers find the items they need while tracking inventory along the way.

Warehouse Bots
Yet the biggest benefit robots provide might be in-warehouse logistics.

In 2012, when Amazon dished out $775 million for Kiva Systems, few could predict that just 6 years later, 45,000 Kiva robots would be deployed at all of their fulfillment centers, helping process a whopping 306 items per second during the Christmas season.

And many other retailers are following suit.

Order jeans from the Gap, and soon they’ll be sorted, packed, and shipped with the help of a Kindred robot. Remember the old arcade game where you picked up teddy bears with a giant claw? That’s Kindred, only her claw picks up T-shirts, pants, and the like, placing them in designated drop-off zones that resemble tiny mailboxes (for further sorting or shipping).

The big deal here is democratization. Kindred’s robot is cheap and easy to deploy, allowing smaller companies to compete with giants like Amazon.

Final Thoughts
For retailers interested in staying in business, there doesn’t appear to be much choice in the way of robotics.

By 2024, the US minimum wage is projected to be $15 an hour (the House of Representatives has already passed the bill, but the wage hike is meant to unfold gradually between now and 2025), and many consider that number far too low.

Yet, as human labor costs continue to climb, robots won’t just be coming, they’ll be here, there, and everywhere. It’s going to become increasingly difficult for store owners to justify human workers who call in sick, show up late, and can easily get injured. Robots work 24-7. They never take a day off, never need a bathroom break, health insurance, or parental leave.

Going forward, this spells a growing challenge of technological unemployment (a blog topic I will cover in the coming month). But in retail, robotics usher in tremendous benefits for companies and customers alike.

And while professional re-tooling initiatives and the transition of human capital from retail logistics to a booming experience economy take hold, robotic retail interaction and last-mile delivery will fundamentally transform our relationship with commerce.

This blog comes from The Future is Faster Than You Think—my upcoming book, to be released Jan 28th, 2020. To get an early copy and access up to $800 worth of pre-launch giveaways, sign up here!

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

Image Credit: Image by imjanuary from Pixabay Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#435804 New AI Systems Are Here to Personalize ...

The narratives about automation and its impact on jobs go from urgent to hopeful and everything in between. Regardless where you land, it’s hard to argue against the idea that technologies like AI and robotics will change our economy and the nature of work in the coming years.

A recent World Economic Forum report noted that some estimates show automation could displace 75 million jobs by 2022, while at the same time creating 133 million new roles. While these estimates predict a net positive for the number of new jobs in the coming decade, displaced workers will need to learn new skills to adapt to the changes. If employees can’t be retrained quickly for jobs in the changing economy, society is likely to face some degree of turmoil.

According to Bryan Talebi, CEO and founder of AI education startup Ahura AI, the same technologies erasing and creating jobs can help workers bridge the gap between the two.

Ahura is developing a product to capture biometric data from adult learners who are using computers to complete online education programs. The goal is to feed this data to an AI system that can modify and adapt their program to optimize for the most effective teaching method.

While the prospect of a computer recording and scrutinizing a learner’s behavioral data will surely generate unease across a society growing more aware and uncomfortable with digital surveillance, some people may look past such discomfort if they experience improved learning outcomes. Users of the system would, in theory, have their own personalized instruction shaped specifically for their unique learning style.

And according to Talebi, their systems are showing some promise.

“Based on our early tests, our technology allows people to learn three to five times faster than traditional education,” Talebi told me.

Currently, Ahura’s system uses the video camera and microphone that come standard on the laptops, tablets, and mobile devices most students are using for their learning programs.

With the computer’s camera Ahura can capture facial movements and micro expressions, measure eye movements, and track fidget score (a measure of how much a student moves while learning). The microphone tracks voice sentiment, and the AI leverages natural language processing to review the learner’s word usage.

From this collection of data Ahura can, according to Talebi, identify the optimal way to deliver content to each individual.

For some users that might mean a video tutorial is the best style of learning, while others may benefit more from some form of experiential or text-based delivery.

“The goal is to alter the format of the content in real time to optimize for attention and retention of the information,” said Talebi. One of Ahura’s main goals is to reduce the frequency with which students switch from their learning program to distractions like social media.

“We can now predict with a 60 percent confidence interval ten seconds before someone switches over to Facebook or Instagram. There’s a lot of work to do to get that up to a 95 percent level, so I don’t want to overstate things, but that’s a promising indication that we can work to cut down on the amount of context-switching by our students,” Talebi said.

Talebi repeatedly mentioned his ambition to leverage the same design principles used by Facebook, Twitter, and others to increase the time users spend on those platforms, but instead use them to design more compelling and even addictive education programs that can compete for attention with social media.

But the notion that Ahura’s system could one day be used to create compelling or addictive education necessarily presses against a set of justified fears surrounding data privacy. Growing anxiety surrounding the potential to misuse user data for social manipulation is widespread.

“Of course there is a real danger, especially because we are collecting so much data about our users which is specifically connected to how they consume content. And because we are looking so closely at the ways people interact with content, it’s incredibly important that this technology never be used for propaganda or to sell things to people,” Talebi tried to assure me.

Unsurprisingly (and worrying), using this AI system to sell products to people is exactly where some investors’ ambitions immediately turn once they learn about the company’s capabilities, according to Talebi. During our discussion Talebi regularly cited the now infamous example of Cambridge Analytica, the political consulting firm hired by the Trump campaign to run a psychographically targeted persuasion campaign on the US population during the most recent presidential election.

“It’s important that we don’t use this technology in those ways. We’re aware that things can go sideways, so we’re hoping to put up guardrails to ensure our system is helping and not harming society,” Talebi said.

Talebi will surely need to take real action on such a claim, but says the company is in the process of identifying a structure for an ethics review board—one that carries significant influence with similar voting authority as the executive team and the regular board.

“Our goal is to build an ethics review board that has teeth, is diverse in both gender and background but also in thought and belief structures. The idea is to have our ethics review panel ensure we’re building things ethically,” he said.

Data privacy appears to be an important issue for Talebi, who occasionally referenced a major competitor in the space based in China. According to a recent article from MIT Tech Review outlining the astonishing growth of AI-powered education platforms in China, data privacy concerns may be less severe there than in the West.

Ahura is currently developing upgrades to an early alpha-stage prototype, but is already capturing data from students from at least one Ivy League school and a variety of other places. Their next step is to roll out a working beta version to over 200,000 users as part of a partnership with an unnamed corporate client who will be measuring the platform’s efficacy against a control group.

Going forward, Ahura hopes to add to its suite of biometric data capture by including things like pupil dilation and facial flushing, heart rate, sleep patterns, or whatever else may give their system an edge in improving learning outcomes.

As information technologies increasingly automate work, it’s likely we’ll also see rapid changes to our labor systems. It’s also looking increasingly likely that those same technologies will be used to improve our ability to give people the right skills when they need them. It may be one way to address the challenges automation is sure to bring.

Image Credit: Gerd Altmann / Pixabay Continue reading

Posted in Human Robots