Tag Archives: sensors
#437820 In-Shoe Sensors and Mobile Robots Keep ...
In shoe sensor
Researchers at Stevens Institute of Technology are leveraging some of the newest mechanical and robotic technologies to help some of our oldest populations stay healthy, active, and independent.
Yi Guo, professor of electrical and computer engineering and director of the Robotics and Automation Laboratory, and Damiano Zanotto, assistant professor of mechanical engineering, and director of the Wearable Robotic Systems Laboratory, are collaborating with Ashley Lytle, assistant professor in Stevens’ College of Arts and Letters, and Ashwini K. Rao of Columbia University Medical Center, to combine an assistive mobile robot companion with wearable in-shoe sensors in a system designed to help elderly individuals maintain the balance and motion they need to thrive.
“Balance and motion can be significant issues for this population, and if elderly people fall and experience an injury, they are less likely to stay fit and exercise,” Guo said. “As a consequence, their level of fitness and performance decreases. Our mobile robot companion can help decrease the chances of falling and contribute to a healthy lifestyle by keeping their walking function at a good level.”
The mobile robots are designed to lead walking sessions and using the in-shoe sensors, monitor the user’s gait, indicate issues, and adjust the exercise speed and pace. The initiative is part of a four-year National Science Foundation research project.
“For the first time, we’re integrating our wearable sensing technology with an autonomous mobile robot,” said Zanotto, who worked with elderly people at Columbia University Medical Center for three years before coming to Stevens in 2016. “It’s exciting to be combining these different areas of expertise to leverage the strong points of wearable sensing technology, such as accurately capturing human movement, with the advantages of mobile robotics, such as much larger computational powers.”
The team is developing algorithms that fuse real-time data from smart, unobtrusive, in-shoe sensors and advanced on-board sensors to inform the robot’s navigation protocols and control the way the robot interacts with elderly individuals. It’s a promising way to assist seniors in safely doing walking exercises and maintaining their quality of life.
Bringing the benefits of the lab to life
Guo and Zanotto are working with Lytle, an expert in social and health psychology, to implement a social connectivity capability and make the bi-directional interaction between human and robot even more intuitive, engaging, and meaningful for seniors.
“Especially during COVID, it’s important for elderly people living on their own to connect socially with family and friends,” Zanotto said, “and the robot companion will also offer teleconferencing tools to provide that interaction in an intuitive and transparent way.”
“We want to use the robot for social connectedness, perhaps integrating it with a conversation agent such as Alexa,” Guo added. “The goal is to make it a companion robot that can sense, for example, that you are cooking, or you’re in the living room, and help with things you would do there.”
It’s a powerful example of how abstract concepts can have meaningful real-life benefits.
“As engineers, we tend to work in the lab, trying to optimize our algorithms and devices and technologies,” Zanotto noted, “but at the end of the day, what we do has limited value unless it has impact on real life. It’s fascinating to see how the devices and technologies we’re developing in the lab can be applied to make a difference for real people.”
Maintaining balance in a global pandemic
Although COVID-19 has delayed the planned testing at a senior center in New York City, it has not stopped the team’s progress.
“Although we can’t test on elderly populations yet, our students are still testing in the lab,” Guo said. “This summer and fall, for the first time, the students validated the system’s real-time ability to monitor and assess the dynamic margin of stability during walking—in other words, to evaluate whether the person following the robot is walking normally or has a risk of falling. They’re also designing parameters for the robot to give early warnings and feedback that help the human subjects correct posture and gait issues while walking.”
Those warnings would be literally underfoot, as the in-shoe sensors would pulse like a vibrating cell phone to deliver immediate directional information to the subject.
“We’re not the first to use this vibrotactile stimuli technology, but this application is new,” Zanotto said.
So far, the team has published papers in top robotics publication venues including IEEE Transactions on Neural Systems and Rehabilitation Engineering and the 2020 IEEE International Conference on Robotics and Automation (ICRA). It’s a big step toward realizing the synergies of bringing the technical expertise of engineers to bear on the clinical focus on biometrics—and the real lives of seniors everywhere. Continue reading
#437807 Why We Need Robot Sloths
An inherent characteristic of a robot (I would argue) is embodied motion. We tend to focus on motion rather a lot with robots, and the most dynamic robots get the most attention. This isn’t to say that highly dynamic robots don’t deserve our attention, but there are other robotic philosophies that, while perhaps less visually exciting, are equally valuable under the right circumstances. Magnus Egerstedt, a robotics professor at Georgia Tech, was inspired by some sloths he met in Costa Rica to explore the idea of “slowness as a design paradigm” through an arboreal robot called SlothBot.
Since the robot moves so slowly, why use a robot at all? It may be very energy-efficient, but it’s definitely not more energy efficient than a static sensing system that’s just bolted to a tree or whatever. The robot moves, of course, but it’s also going to be much more expensive (and likely much less reliable) than a handful of static sensors that could cover a similar area. The problem with static sensors, though, is that they’re constrained by power availability, and in environments like under a dense tree canopy, you’re not going to be able to augment their lifetime with solar panels. If your goal is a long-duration study of a small area (over weeks or months or more), SlothBot is uniquely useful in this context because it can crawl out from beneath a tree to find some sun to recharge itself, sunbathe for a while, and then crawl right back again to resume collecting data.
SlothBot is such an interesting concept that we had to check in with Egerstedt with a few more questions.
IEEE Spectrum: Tell us what you find so amazing about sloths!
Magnus Egerstedt: Apart from being kind of cute, the amazing thing about sloths is that they have carved out a successful ecological niche for themselves where being slow is not only acceptable but actually beneficial. Despite their pretty extreme low-energy lifestyle, they exhibit a number of interesting and sometimes outright strange behaviors. And, behaviors having to do with territoriality, foraging, or mating look rather different when you are that slow.
Are you leveraging the slothiness of the design for this robot somehow?
Sadly, the sloth design serves no technical purpose. But we are also viewing the SlothBot as an outreach platform to get kids excited about robotics and/or conservation biology. And having the robot look like a sloth certainly cannot hurt.
“Slowness is ideal for use cases that require a long-term, persistent presence in an environment, like for monitoring tasks. I can imagine slow robots being out on farm fields for entire growing cycles, or suspended on the ocean floor keeping track of pollutants or temperature variations.”
—Magnus Egerstedt, Georgia Tech
Can you talk more about slowness as a design paradigm?
The SlothBot is part of a broader design philosophy that I have started calling “Robot Ecology.” In ecology, the connections between individuals and their environments/habitats play a central role. And the same should hold true in robotics. The robot design must be understood in the environmental context in which it is to be deployed. And, if your task is to be present in a slowly varying environment over a long time scale, being slow seems like the right way to go. Slowness is ideal for use cases that require a long-term, persistent presence in an environment, like for monitoring tasks, where the environment itself is slowly varying. I can imagine slow robots being out on farm fields for entire growing cycles, or suspended on the ocean floor keeping track of pollutants or temperature variations.
How do sloths inspire SlothBot’s functionality?
Its motions are governed by what we call survival constraints. These constraints ensure that the SlothBot is always able to get to a sunny spot to recharge. The actual performance objective that we have given to the robot is to minimize energy consumption, i.e., to simply do nothing subject to the survival constraints. The majority of the time, the robot simply sits there under the trees, measuring various things, seemingly doing absolutely nothing and being rather sloth-like. Whenever the SlothBot does move, it does not move according to some fixed schedule. Instead, it moves because it has to in order to “survive.”
How would you like to improve SlothBot?
I have a few directions I would like to take the SlothBot. One is to make the sensor suites richer to make sure that it can become a versatile and useful science instrument. Another direction involves miniaturization – I would love to see a bunch of small SlothBots “living” among the trees somewhere in a rainforest for years, providing real-time data as to what is happening to the ecosystem. Continue reading